

 NIPO TRAINING AND
CERTIFICATION

19 February 2019

NIPO

Grote Bickersstraat 74

1013 KS Amsterdam

The Netherlands

T +31 (20) 522 59 89

F +31 (20) 522 53 33

info@niposoftware.com

www.niposoftware.com

PO Box 247

1000 AE Amsterdam

The Netherlands

Table of contents

1. Introduction ... 5
Who is this training course for? ... 5
What is the purpose of this training? ... 5
How is this training structured? ... 6
Is this training mandatory? ... 6
How should I proceed? ... 6
Duration .. 7
2. Market Research ... 7
3. ODIN Developer .. 7
Inserting Question Definitions ... 8
Changing Question Options... 8
Changing Code Options .. 10
4. Let’s begin with the basics .. 11
4.1 Definitions .. 11
4.2 Main Survey Components ... 12
Sample (Who to ask) ... 12
Questionnaire (What to ask) ... 12
Look and Feel .. 13
Data ... 13
4.3 Typical Workflow .. 14
5. Installing The ODIN Developer .. 15
6. Components ... 15
7. Question Types ... 16
*ALPHA ... 16
Assignment 1 ... 16
*NUMBER .. 16

 3

Assignment 2 ... 17
*CODES .. 17
L (Length) In (Multipunched) Questions .. 17
Assignment 3 ... 17
Assignment 4 ... 18
*OPEN .. 18
Assignment 5 ... 19
8. Controlling Answers .. 19
*CONTROL .. 19
*RANDOM .. 20
*BUT .. 21
9. Flow Control .. 21
*GOTO .. 21
*BACK .. 22
*IF .. 23
10. Intro ... 24
11. Ending A Questionnaire .. 24
*ENDNGB .. 25
*END .. 25
Assignment 6 ... 25
Result Codes.. 25
Assignment 7 ... 26
12. Temporary Variables ... 26
*TEXTVARS .. 26
*VARS .. 27
Asignment 8 ... 28
13. Storing Answers..28
*LISTS .. 28
*DUMMY .. 29

*INCLUDE/ *COPY / *EXCLUDE .. 30
14. Repetition... 31
Repeat Number .. 31
*REPEAT .. 32
Assignment 9 ... 33
*MATRIX .. 34
Assignment 10 ... 36
Assignment 11.. 36
*BLOCK ... 36
Assignment 12 ... 37
15. ODIN Naming Conventions ... 37
Questions ... 37
Data Fields ... 37
Answer Codes .. 38
Variables ... 39
16. Look And Feel .. 41
What are templates for? ... 42
What are themes for? .. 42
*TEMPLATE ... 43
*UIRENDER ... 44
*UIOPTIONS .. 44
Assignment 13 ... 44
17. Background Variables .. 45
18. Interviewing the “right” people .. 46
Quota ... 46
Quota Variables, Quota Cells and Quota Check ... 47
Assignment 14 ... 49
19. Future Proof (Future Waves) .. 50
Naming Conventions ... 50

 4

Allocate Enough Space ... 50
Comments .. 51
20. Logical Expressions/Operators .. 52
Expression Operators ... 52
Examples of Expressions ... 53
Common Mistakes in Expressions ... 54
21. Testing ..54
Check .. 54
Run .. 55
Generate Dummy Data.. 55
What does it look like? ... 56
22. Fieldwork ..56
Making Changes During Fieldwork... 56
23. Data Formats .. 58
NIPO Diana ... 58
Code Label Exports in a *FORM Question .. 60
Random Code Number Export in NIPO Diana ... 61
Order Code Number Export in NIPO Diana .. 62
Exports of *FORM Questions with Codes ... 62
Triple-S XML .. 64
SPSS Portable ... 66
SPSS-PC .. 68
Ascribe .. 70
Quantime ... 71
Appendix 1 Terms of Use and Acceptable Use policy ... 74
Resources ... 74
Congratulations! ... 74

 5

1. Introduction

Hello,

Welcome to our NIPO Scripter Basic training program. During this course you will

learn more about scripting, the ODIN Developer, market-research in general and

managing fieldwork.

This training will cover scripting “basic” surveys. This means simple, more generic

surveys and questionnaires.

The training is spread out over several chapters. You have to complete each

chapter before you can move on to the next one. Once you’ve completed all the

chapters, you get an Assignment that allows you to set up your very own “live”

project, complete with sample and results.

The final exam serves as a benchmark, so you can test your skills and know-how.

Once you have completed the entire course, you will be considered a Basic

Scripter and you will receive a formal certificate.

Who is this training course for?

This training course is for scripters who would like to get certified training. These

are people who set up, specify and manage samples and market-research projects.

This course is for rookie scripters, people who have done little, to no scripting

before.

We will concentrate in this course on ODIN for Nfield Online and CAPI. Although

ODIN NFS is in large part the same as Nfield ODIN there are differences.

This course is also for people who use Nfield Composer to create questionnaires,

but don’t script themselves. As an Nfield Composer user you should know all of the

Nfield software, not just the Nfield Composer. You should also learn a little bit

about ODIN.

This course is not for Nfield CAPI Fieldwork Managers, Nfield Online Fieldwork

Managers, or more advanced, experienced scripters.

What is the purpose of this training?

The purpose of this course is to train you in how to use the ODIN Developer to set

up and manage market research projects and samples.

You can do your training at your own pace, from the comfort of your own office, or

home. The course is split up into different chapters; each chapter covers a

different element of scripting, using the ODIN Developer, and what it’s used for.

As you complete each chapter, you gain insight in the software. You also learn the

most efficient workflow: how to set up a project from start to launching fieldwork,

monitoring and checking your progress, quality and results.

This course will take you through the entire process of scripting a research project.

 6

How is this training structured?

The training is organized in a linear, chronological fashion: from start project, to

fieldwork, to checking data. By completing the chapters in order this course takes

you from the creation of a new project, to set up, to loading sample, to setting

targets, to launching fieldwork, to checking results.

Completing this course in the order of the chapters guarantees you will get an

understanding of the ideal workflow when setting up and monitoring market

research projects, saving you time, effort and cost.

You have to finish each chapter, complete with Assignments, before you can move

on to the next chapter.

Once you have completed all chapters, you get a final exercise: you get to set up,

run and monitor your very own “live” survey with real sample and real results.

Once we have reviewed your “live” project you graduate and receive a formal

certificate for completing this course.

Is this training mandatory?

No, it is not.

You can just grab a manual from our Customer Support Center, acquire a login and

learn the software yourself.

However, if you do not complete the training course, you cannot get free technical

support from our Global Support Teams in Asia, America or Europe.

Certified customers who have completed this course get free technical support.

We urge you to take the time and complete the entire course. It will help your

skillset and make you a real champion of the software. It’ll help you set-up and

manage projects with confidence and ease.

It’s a fun and interactive way to get to know the software and to learn more about

online market research.

How should I proceed?

We advise that you open two browser windows, or two tabs. You should also open

the folder where you have downloaded and saved the complimentary training

materials.

In the first tab or window you can open this training course and work through each

chapter. In the second window open the ODIN Developer.

You can then go back and forth and explore the examples from each chapter and

practice these inside the ODIN Developer as you move forward.

The course is pretty evenly split between theory and experimentation; each

chapter ends with Assignments, so you can immediately put what you’ve learned

into practice and test your understanding and skills.

 7

We strongly advise you to complete this training course before running any live

projects.

We furthermore advise you to use the ODIN Developer scripting guide. All ODIN

commands in this training course will be printed in Courier Font, the ODIN

scripting guide lists all commands alphabetically, with many more examples and

features that we can do during this course. You get a copy of the reference guide

when you install the ODIN Developer, see further below this course.

If you feel anything is missing from this training course, or if anything should be

made clearer, please let us know. We welcome your feedback. Send us a mail at

helpdesk@nipo.com

Duration

We estimate that this course will take you some 16 hours to complete.

Most chapters can be studied and completed rather swiftly. The chapters on

quotas, sampling and invitations take a bit longer.

We estimate that should be able to work through a short chapter in 1-2 hours. The

quota chapter will probably take 4-8 hours.

You can spread these hours out over several workdays, even do the course from

the comfort of your home.

Welcome to the wonderful world of scripting!

2. Market Research

The research process is a linear one. A client will have a research question. That

research question will be turned into a questionnaire with specific questions

meant for a specific target audience: your respondents. A scripter or programmer

will turn that questionnaire into an electronic script. This “program”, the digital

questionnaire, is then processed by Nfield and delivered to people, either

respondents, or interviewers who conduct the actual interviewing either by

telephone, via an app or online. This is called fieldwork: delivering your

questionnaire to people and inviting them to fill it in. When people begin to fill in

your questionnaire you are conducting data collection. The collected data, the

results, are processed and analyzed and eventually delivered to the client, either

as a report, data or presentation. The results are your end product.

3. ODIN Developer

The ODIN Developer is offline software that allows you to “script” questionnaires.

Scripting questionnaires is often called application programming. You use the

ODIN Developer, the application, to create your questionnaire, your script. The

ODIN Developer runs offline. It will require a PC/laptop, with Windows, so you can

install ODIN.

Using the ODIN Developer one can create questionnaires for face2face

interviewing, self-completion (online), or telephone interviewing. It is imperative

that you consider your audience as you script questionnaires. Who is actually

going to be working with this questionnaire? Who is going to fill it in? Is it an

mailto:helpdesk@nipo.com

 8

interviewer, or a respondent? And if it’s an interviewer, how will the interview be

conducted: via telephone, via an app on some device, or online?

As we mention specific ODIN commands during this training course, we strongly

advise you to look up these commands in the ODIN reference guide. Each

command is listed alphabetically in the scripting guide with many examples as

well as suggestions for related commands.

The NIPO ODIN Developer is the NIPO ODIN script author's tool. It can be used for

the following purposes:

 Create, edit and check questionnaires for NFS CATI, CAPI, CAWI and Nfield

CAPI, Online

 Run a preview of the questionnaire in NFS CATI, CAPI, CAWI and Nfield

Online

 Create and edit picture libraries for use with NIPO ODIN questionnaires

 Generate dummy (test) data to verify questionnaire integrity

 Export survey data for statistical analysis in various packages.

This section briefly discusses a number of features of the NIPO ODIN Developer.

Please note: We urge you to study the entire ODIN Scripting manual. This training

is not meant as a replacement.

There are two ways to script using the ODIN Developer. The first method is by

using the menus to select questionnaire element and add them.

Inserting Question Definitions

To simplify creating NIPO ODIN Questionnaires, right-click the editor window and

select Insert to choose from the available question options.

Inserting a question

Changing Question Options

Right-click on a question line to change the question options. Depending on the

type of question, one of the following dialog boxes appears.

Changing the general question options

 9

Changing the question options for a *CODES question

Changing the question options for a *NUMBER question

Changing the question options for an *OPEN question

 10

Changing the question options for an *ALPHA question

Changing the question options for a *SCALE question

Changing the question options for a *LINE question

Changing Code Options

Right-click on a category code line to change the code options. The following

dialog appears.

Changing the code options in a *CODES question

 11

So you can create an entire, basic questionnaire using the composer inside Nfield,

or you can create a questionnaire by selecting and inserting the right elements

using the ODIN Developer.

The second way to script is to actually type ODIN syntax, to actually learn the ODIN

“language” so you can create questionnaires. In this training, we will focus on the

actual commands, the actual ODIN language. If you can master that language, you

will become an efficient scripter.

4. Let’s begin with the basics

Let’s begin with some basic definitions we will be using throughout this course.

4.1 Definitions

Survey - your total project in its entirety. A survey will consist of: a questionnaire,

media files such as sound or video, a list of respondents you want to question and

your collected data.

Questionnaire - your questionnaire will consist of a script (a file with the actual

questions and answer options) and your quota variables and quota cells.

Script - the actual programmed questionnaire, containing the questions, the

answer options and the routing

Question - an element that collects data. Questions can either be asked directly of

respondents (where they input an answer) of questions can be filled with

information in the background.

Answer - The answers are what we put into the question. There are various kinds

of answers: open, (alphanumeric) or closed. Open answers are answers where the

respondents type in an alphanumeric response, for instance their opinion about

something. Alphanumeric answers are for questions such as age, or zipcode. The

response - the answer - is usually a short alphanumeric string. Closed answers are

answers that need to be chosen from a predefined list.

Quota - A quota is a subset of people you wish to investigate. A quota can be

anything, such as Gender, or Age, or a zipcode, or a city, or an income-class. A

quota consists of a quota variable - the actual name of the quota - such as

"Gender" and quota-cells, the actual elements that make up the variable such as

"Male" and "Female".

 12

Targets - the numbers of people you wish to investigate overall and per quota-

cell.

Sample - a detailed list of the people you wish to query/investigate

Invitations - the actual invites you send out to the people you want to participate

in your online surveys.

Respondents - the people who will be answering your questions, the people you

are investigating

Data - the information you are collecting

We will begin with the basics, allowing you to get an understanding of the various

online research concepts as well as the actual interface, the Nfield Manager. Once

you’re more comfortable with those, we will begin to set up actual projects.

4.2 Main Survey Components

Let’s take a closer look into the main components of Market Research. Your main

components will be: your sample (the people you want to participate) and your

questionnaire (the actual questions you want them to answer). The end result is

the collected data itself.

Sample (Who to ask)

Approaching respondents is expensive. You want to limit the amount of people

you approach. If you have to send out thousands and thousands of invites to reach

the right people, fieldwork will become very costly. Making sure your sample is just

right is the first important step. Sample will usually be delivered by the client, by a

sample provider, or by your own sampling department. We advise you to always

check a sample file. Use your own eyes to check and make sure that sample is

alright. We have suggestions further down this course on exactly what to check

and watch for.

Questionnaire (What to ask)

The questionnaire is the actual data collection tool. It will typically consist of four

sections.

1. Sample Variables / Background Questions - Your sample, a file containing

the actual people you want to invite, will often contain personal

information about your potential respondents, such as email, age, gender,

name etc. These variables are “read” into your questionnaire, so that they

become part of the data you collect. The respondent specific information

from the sample is read into your questionnaire in the background.

2. Screener - You want to make sure you query the right people. A screener

section is meant to identify and classify the right people and to weed out

the wrong people. If you are conducting research on car drivers? One of

your screener questions will be: Do you have a driver’s license? The

people who say “no”, cannot continue. The screener section will usually

take place at the beginning of the questionnaire. Conducting fieldwork is

 13

expensive. You want to disregard and dismiss people who do not meet

your research criteria as soon as possible.

3. Main Questionnaire - This will be the actual research, containing all the

questions you want to ask to your respondents.

4. Exit - Respondents will exit your survey in a variety of ways. People who

do not meet your research criteria will exit in a different way as the

people who complete your survey. The “outro” or exit-section of your

survey is where respondents are: a.) thanked for their time and

participation and b.) classified with an exit-status. This can be ‘successful’,

if the respondent completes the interview in its entirety. Or it can be

“screened-out” if the respondent doesn’t meet your research criteria.

There are numerous ways to exit from a survey and you can customize

those exits.

Look and Feel

The way your survey looks, feels and behaves, it’s colors, logos and buttons, is

controlled outside of the actual questionnaire. The look and feel of your survey is

determined by cascading style sheets and javascript. We call this a template and a

theme. A template is a “skin” that sits around your survey. A template interacts

with the browser to render the survey in a specific way. A template can have

themes. Themes contain custom elements that overrule the master template,

altering standard behavior for specific projects, clients or even questions.

1. Template - Because respondents are filling in the questionnaires

themselves, you have to make absolutely sure your survey looks and

performs the same on every device, be it a laptop, a PC, a phone or a

tablet. A template is a “skin” that sits around your digital questionnaire

that determines the look and feel of your survey. It determines the colors

of buttons, logo’s and the “style” of the overall questionnaire. Nfield

comes equipped with a number of pre-designed templates. Templates can

only be uploaded and activated by NIPO. They determine the way things

look inside the browser or the CAPI app. We call that “client side”, or the

“front end”. They can also interact with the “back-end”, the actual Nfield

servers, which is why only NIPO Software can upload, activate and manage

templates.

2. Theme - By using a custom Theme you can overwrite certain elements and

controls in the template. You can overwrite and change fonts, colors,

logos, even the way specific questions look and behave. Themes are

written using JavaScript. If you are considering creating your own custom

themes you should get in touch with our helpdesk. They have extensive

documentation and example themes available. Themes cannot do

anything server side. They only regulate things client-side, at the

respondent’s end, in their browser. Themes are therefore created and

managed by you.

Data

The questionnaire is filled in by typing answers to all the questions, those answers

are stored as data. There are various kinds of data. There is open ended data,

when respondents or interviewers have to state an opinion and actually type

words or sentences as their answer. And there is closed data, when respondents or

interviewers merely select an item from a predefined list which is stored as an

(alpha)numeric code. Each respondent becomes a “record” in the data. All the

records, all the respondents combined are called your datafile.

 14

4.3 Typical Workflow

The typical workload of a scripter is to set up these components so that data can

be collected, while monitoring the overall quality of the sample, fieldwork and

data.

You will want to know what your sample consists of and how many people you

need to interview.

You will require a questionnaire that you will need to thoroughly test.

After testing you will deliver your script with all its settings so that data collection

and fieldwork can begin.

Once that is done we will share a link to the actual survey with respondents.

Sharing this link can be done in a variety of ways: via an sms, embedding the link

on some website, or sending a formal invitation with the link to specific

respondents. Alternatively, if interviewers are conducting the actual interviews,

you will either provide them with sample (telephone numbers to dial) or a walking

route or location, where to find people to interview.

Once fieldwork begins and data is being collected, we will monitor fieldwork,

check progress and monitor the quality of the results.

The diagram below depicts the actual workflow. Please have a close look.

The standard workflow consists of the following steps:

 Always

 Create a new script or copy an old one

 Test/Preview

Note: This is a circular process. As you create and style your questionnaire and

add media files to become an actual script, you thoroughly test, going back and

forth between creating and editing or (re)uploading and preview, to make sure all

is functioning properly.

If needed

 Upload a custom theme (talk to our helpdesk)

 Set up quotas/targets

 Upload respondent data/specific respondents to interview (sample)

 Set up Invitations

Always

 Check all your settings

 Test/Preview your survey

 Share the survey link (or if needed: send invitations)

 Monitor fieldwork (progress, targets, quality control)

 Run toplines to check results

 15

 Download data for processing and reporting

Note: The 2nd part of this process is also circular. After you’ve prepared your

sample and begun inviting people, you check and monitor fieldwork and make

adjustments as well. You can upload more sample, send more invites etc. You

furthermore use the reporting features to check your actual data and make

adjustments if anything is wrong and/or missing. These adjustments can mean

changes to the questionnaire, its settings, or the sample.

The first chapters will deal with some basic understanding of the ODIN Developer

and what the different elements and settings mean and can be used for. In

following chapters we begin to set up actual surveys.

This training will explain the above workflow, allowing you to create market

research questionnaires using the ODIN Developer.

5. Installing the ODIN Developer

Installing the ODIN Developer is very straightforward. Simply download the ODIN

Developer from the customer section of our website. Just contact our helpdesk

and ask them for a login to our Customer Support Center. Please note: You will

need to have ADMIN permissions, which allow you to install software on your PC or

laptop. If you do not have such permissions, speak to your local IT Manager.

The ODIN Developer comes with various manuals, example scripts and other tools.

This training course is not meant as a replacement of those. As you begin scripting

you will use these manuals either in print or digital form regularly, to look things

up, or find examples of code.

The ODIN Developer allows you to either select and insert questionnaire objects,

or type the syntax, the actual code yourself. In this training we will be dealing with

basic syntax, teaching you how to script.

6. Components

Let’s start with the main components that make up a question. A question will

always have an ID, this is a number, a unique identifier. It’s always best to begin

with Question 1 and then Question 2 and then so on and so forth. A question will

also have a type. The type determines what kind of question it is, open or closed

for instance. Each question will have a starting data position and a specified

length. This is the actual physical space the question will take up in our data file.

And finally, each question will have options that determine the behavior inside a

specific question type, for instance rendering an answer list in a randomized

order. The Question Text is how the question is actually phrased.

The syntax will always look like this, with each argument preceded by an asterix.

*Question ID *Questiontype Lnumber *Questionoptions Question Text

 16

7. L (Length) In Questions

As stated before, each interview, each respondent becomes a record in our actual

datafile. A record is a single line in a datafile. That line will consist of positions. We

begin on the left-hand side, with position 1 and we end wherever we end up. The

ODIN Developer allows the user to allocate data positions for your questions,

making sure answers are logically and comprehensively stored. To do that, the

user needs to estimate the number of positions needed to store the answer to the

question and add it to the L argument. For example, in the script in section 8,

*Alpha (below) L15 means 15 places are available to store the answer.

8. Question Types

A questionnaire is a data collection tool, nothing more and nothing less. The

purpose of all questionnaires is to collect data. Each question is therefore a ‘net’

that captures the actual answer(s), the data. The ODIN Developer allows you to

create different types of questions. The main question types are listed below.

*ALPHA

These are open-ended questions. Meaning there are no answer options. These

questions are used when we want an interviewer or respondent to type in a name,

or a zip-code, something short.

For instance:

*QUESTION 1 *ALPHA L15

What is your first name?

Our data, the actual answer(s) is open ended as well. These open-ended answers

are coded to regular codes, by a coding department, after fieldwork has

completed. Please do not confuse these two question types. *ALPHA is used when

we want some short input from the respondent, such as a name, or a brand. We

use *OPEN when we want the respondent or interviewer to really be able to state

an opinion, a lengthier response.

Please note: Open ended questions do not end up in your datafile. They end up in

what we call an O-file, a file containing just the responses, the answers to open-

ended questions. The O-file is usually coded by a coding department after

fieldwork. (We will deal with this in later chapters).

All other questions types are closed questions. This means they come with answer

options or a limit to what can be submitted as an answer. Closed questions end up

in your datafile, where all the responses are stored as numbers.

Assignment 1

Create a script with a question asking for someone’s name

*NUMBER

These are numeric questions, where we expect the interviewer, or respondent to

type in a number.

 17

For instance:

*QUESTION 1 *NUMBER L3 *MIN 16 *MAX 99

What is your age?

In this case our data will be a number between 16 and 99, the actual age of the

person we are interviewing.

Assignment 2

Building on the previous created script add a question asking for somebody’s

exact age

*CODES

The most common questions will be categorized questions. These are questions

that come with a predefined list of answer options. There are two types of

categorized, coded questions, namely: single response questions and multi

response questions.

Single

*QUESTION 1 *CODES 61L1

Do you own a car?

1: yes

2: no

Multi

*QUESTION 1 *CODES 62L20 *MULTI

Which car do you own?

1: Audi

2: BMW

3: Citroen

4: Fiat

5: Ford

6: Hyundai

7: Other *OPEN

8: None of these *NMUL

L (Length) In Questions

As stated before, each interview, each respondent becomes a record in our actual

datafile. A record is a single line in a datafile. That line will consist of positions. We

begin on the left-hand side, with position 1 and we end wherever we end up. The

ODIN Developer allows you to allocate data positions for your questions, making

sure answers are logically and comprehensively stored.

Note the first 60 positions of each data record are reserved for system variables.

Assignment 3

Building on the previous created script add a question asking for somebody’s

gender

 18

The numbers, 61 and 62, mean the actual positions in our datafile, the 61st and

62nd positions, counting from left to right.

The “L” stands for LENGTH.

Our single question will only take up one position in our datafile, containing either

a ‘1’ or a ‘2’.

Our multi question can take up a maximum of 8 positions, since we have 8 answer

options. We therefore use 62L8, which means begin at position 62 and allocate 8

positions from there onwards. A multi question is ‘punched’ (coded) into the data

as a string of zeros (‘0’) and ones (‘1’). The one (‘1’) means mentioned and the zero

(‘0’) means not mentioned.

So

10000000

Means they own an Audi

And

00101000

Means they own a Citroen AND a Ford.

As you can see we added two “special” options, namely “Other” where we added

*OPEN. This means that whenever this option is chosen, the interviewer or the

respondent will be prompted to type in the actual car brand.

The second “special” option *NMUL means “NOT MULTI”. If our respondent doesn’t

own a car, they need to be able to say, “None of these”. Options like “Don’t know”,

“Refuse to answer” and “None of these” are always the only response possible.

You cannot own a brand of car and at the same time say, “None of these”. We

therefore always use *NMUL on these options to maintain our data consistency

and data integrity.

Please note: You do not have to add positions and length to your questions. When

you are done scripting your questionnaire, you compile your questionnaire. The

ODIN Developer will then fix positions and length automatically, making sure all

your codes fit based on the L(engths) you have provided in your ODIN script.

Let’s recap: So there are various question types, some of which come with

predefined codes. Then there are various question options, such as conditions and

randomization. And then there are codes options, such as *NMUL. And finally,

there are commands, instructions which allow for flow-control and questionnaire

logic.

Assignment 4

Building on the previous created script add a question asking for all the car

brands somebody might know

*OPEN

These are open ended questions. This means that there is no predefined answer

list. An *OPEN question is used for a different purpose than an *ALPHA question.

An *OPEN question is used when we want a respondent or interviewer to type in

their opinion about something. For instance, “What do you think of our Prime

Minister”?

 19

*Question 1 *OPEN 61L100

What do you think of your Prime Minister?

Please note: *OPEN questions do not end up in your data file (U-file), but in your

open-ended answer file (O-file). For more on these files, see further down this

training.

Assignment 5

Building on the previous created script add an unaided awareness question and

an aided awareness question.

9. Controlling Answers

For respondents and interviewers alike, filling in questionnaires can be quite

tedious and even boring. It is therefore important to make sure that we control

what appears on somebody’s screen and how. With simple single punched or

open-ended questions, we don’t have to do much. When dealing with longer

answer lists, or answer options which require us to include or exclude previous

answers, we need to make sure we control how they are displayed.

*CONTROL

*QUESTION 1 *CODES 61L1

Please state the first car brand that comes to your mind.

1: Audi

2: BMW

3: Citroen

4: Fiat

5: Ford

6: Hyundai

7: Other *OPEN

8: None of these *NMUL

*QUESTION 2 *CODES 62L8 *MULTI *CONTROL Q1 N

I am going to read out a number of car brands.

Which of these have you heard of?

1: Audi

2: BMW

3: Citroen

4: Fiat

5: Ford

6: Hyundai

8: None of these *NMUL *NOCON

Let’s begin with the *CONTROL command. This command allows you to INCLUDE or

EXCLUDE answer options from previous questions. The “N” means EXCLUDE. And

the “W” means INCLUDE. So *CONTROL Q1 N, means show all the answers, except

the answer already given at Q1. Using this construction means that the respondent

cannot duplicate their answer from Q1 to Q2. The answer they have already given

at Q1 is excluded from the answer options in Q2.

 20

The *NOCON command makes sure that this answer option - “None of the above”

doesn’t fall under the *CONTROL command and is therefore always displayed.

Now let’s try that the other way around.

*QUESTION 1 *CODES 61L8 *MULTI

Which of the following car brands have you heard of?

1: Audi

2: BMW

3: Citroen

4: Fiat

5: Ford

6: Hyundai

7: Other *OPEN

8: None of these *NMUL

*QUESTION 2 *CODES 71L1 *CONTROL Q1 W

And which of these is your favorite? (Please pick one).

1: Audi

2: BMW

3: Citroen

4: Fiat

5: Ford

6: Hyundai

8: None of these *NMUL *NOCON

In this example we will ask Q2 only if the respondent mentions brands 1-6. We will

include the answers given in Q1, so that the respondent can only pick a favorite,

out of their total brands.

Using *CONTROL allows to safeguard your data. We don’t want a respondent who

knows brands A and B to suddenly drive brand C, since he would have to know that

brand as well. We don’t want people buying things or driving things they are

unaware of.

*RANDOM

When people have to pick answers from long lists, they tend to pick answers that

are at the top of the list. To offset this, you have to randomize the answers of multi

response questions. If the answer options are always randomized, you offset any

bias.

*QUESTION 1 *CODES 61L29 *MULTI *RANDOM

Which of the following car brands have you heard of?

1: Audi

2: BMW

3: Citroen

4: Fiat

5: Ford

6: Hyundai

7: Mercedez

8: Ferrari

 21

9: Porsche

10: Volkswagen

11: Opel

12: Seat

13: Peugeot

14: Renault

15: Rolls Royce

21: Other *OPEN *NOCON

29: None of these *NMUL *NOCON

The *RANDOM command will randomize the order in which the list is displayed.

This is useful for respondents as well as interviewers and makes for higher quality

data collection. Please note: We do not want our “Other” or “None of These”

options to be randomized, so we use *NOCON, to make sure they are not

randomized.

*BUT

You can also create additional buttons, adding answer options that do not appear

in your answer list. In the example below the button with the text “Don’t know” will

appear, and if the user selects it, code 5 will be saved in the data. More

information on this command can be found in NIPO ODIN 5.18 Scripter's Guide.pdf.

*Question 1 *CODES 61L1 *BUT 5 “Don’t know”

Which is your favorite Star Wars character?

1: Luke Skywalker

2: Han Solo

3: Darth Vader

4: Yoda

10. Flow Control

As stated before, a questionnaire is always linear, both for the scripter, as well as

for the people who will later fill in the questionnaire. It should therefore be as

easy as possible to get from the beginning to the end of the questionnaire. Not all

questions will be asked of all people. Some questions will only be asked if people

meet certain conditions. Making sure people only get the questions they are

supposed to get, is called flow control. You, the scripter, will control the flow of

the respondents throughout the questionnaire. It is also called “routing”; you

dictate the route that respondents take through the questionnaire.

*GOTO

We use the *GOTO command when we want somebody to move forward to another

question in the questionnaire. If we want them to miss a section for instance.

*QUESTION 1 *CODES 61L1

Do you own a car?

1: Yes

2: No *GOTO 999

*QUESTION 2 *ALPHA 62L20

 22

What brand of car do you own?

*QUESTION 999

Please note: You can move forward and backwards using the *GOTO command.

Make sure you direct people to questions they’ve actually answered, or it will

throw a warning.

Please note: Question 999 is a blank question. It doesn’t have any text or any

answers. Q999 is nothing more than a label to direct people to, like a specific

address or location, inside your questionnaire.

Please note: We are directing people to ‘999’ and NOT ‘Q999’

*BACK

There are situations thinkable where it makes sense to skip somebody back into

the questionnaire. You do this with the *BACK command. Let’s say we’re looking

for the person who does the main daily shopping for the household. Our

questionnaire would look like this.

*VARS NumCars

*QUESTION 1 *CODES 61L29 *MULTI *RANDOM

Which of the following car brands have you heard of?

Mention at least 3 brands

1: Audi

2: BMW

3: Citroen

4: Fiat

5: Ford

6: Hyundai

7: Mercedez

8: Ferrari

9: Porsche

10: Volkswagen

11: Opel

12: Seat

13: Peugeot

14: Renault

15: Rolls Royce

21: Other *OPEN *NOCON

29: None of these *NMUL *NOCON

*COUNT NumCars Q1

*IF [NumCars < 4] *PAGE Less than 4 cars *BACK 1

Please note: When a respondent doesn’t meet our criteria (they’ve selected less

than 4 cars), we show them the text “Less than 4 cars”, send them back to the

previous question and re-open with our introduction.

Please note: We are directing people to ‘1’ and not ‘Q1’

 23

*IF

The most commonly used command for flow control is *IF. It works very logically.

If the respondent is younger than 18 you do not ask questions about beer. You can

place *IF on questions, to make sure they are only show to the right people. Our

previous example about car ownership, will then look like this.

*QUESTION 1 *CODES 61L1

Do you own a car?

1: Yes

2: No

*QUESTION 2 *ALPHA 62L20 *IF [Q1 , 1]

What brand of car do you own?

In this example, we are asking Q2, only if people answer ‘1’ at Q1.

*IF is much more powerful and flexible than the other commands, since you can

make combinations of codes, like this.

*QUESTION 1 *CODES 62L6 *MULTI

Which of the following movies have you seen in the last 6

months?

1: Star Wars: The Last Jedi

2: The Guardians Of The Galaxy vol. 2

3: Arrival

4: Charlie Chaplin: Gold Rush

5: Orson Welles: Citizen Kane

6: None of the above *NMUL

*QUESTION 2 *CODES 92L1 *IF [Q1 , 4-5]

So you like old, classical movies?

1: Yes

2: No

In this example we are using a combination of codes for our *IF clause, namely

codes 4 and 5, both old, classical movies. If either of those answers is given? We

ask Q2: So you like old, classical movies?

You can use any combination of codes. If the codes are sequential, you can

separate them using the hyphen (“-”). If they are not sequential, you should use a

comma (“,”) to separate the codes, like so:

*QUESTION 3 *CODES 92L1 *IF [Q1 , 1,2,3]

So you’re a science fiction fan?

1: Yes

2: No

*QUESTION 3 *CODES 92L1 *IF [Q1 , 1-3]

So you’re a science fiction fan?

1: Yes

2: No

 24

Both *IF statements mean the same thing. If somebody answers any of the codes

1, 2 or 3 in Q1, we will ask Q3: whether they are a science fiction fan?

11. Intro

Each questionnaire begins with an introduction. This introduction is either read by

the respondents themselves or read aloud by the interviewers as they conduct the

actual interviews. The introduction will explain:

 Who “we” are. What company we’re from.

 What we are researching. What topic we wish to investigate.

 Who we’re looking for. Which people we want to interview.

It’s important to keep your introduction simple, concise and to the point.

There are two main ways to create an introduction using ODIN. You can create an

“empty” question; this is a question without any answer-options. Or you can create

a nice-looking page with the introduction.

An empty question will look like this:

*QUESTION 1

Hello, my name is <x>. I am with <name agency>.

We are conducting a survey about cars.

We are therefore looking for people who drive a car, to answer

some questions.

We are doing this research for <name car brand>.

The entire survey will take a maximum of 10 minutes.

The above text will appear on the screen with a <NEXT> button when the research

begins. Once the text has been read, the <NEXT> button continues the actual

questionnaire.

We urge you to look up all ODIN commands used in this training in the ODIN

reference guide, where you will find more features, options and many more

examples on how to use these commands.

Always make sure your questionnaire begins with a clear and comprehensive

introduction so that interviewers and/or respondents immediately know what

your research is about.

12. Ending A Questionnaire

There are various reasons to end a questionnaire, so there are multiple commands

to do so.

A respondent can for instance not fit our criteria. We may be conducting a study

about cars, for which we only need car drivers. Anybody under 18 would therefore

not qualify, neither would anybody older who doesn’t have a driver’s license. We

would therefore end the questionnaire if the respondent is not useful for us.

 25

If a respondent completes our entire questionnaire, we will want to thank them for

their participation and end the questionnaire there.

*ENDNGB

Sometimes we will only deal with the screening section of our script at a later

stage in the questionnaire. We will ask people their age, gender, income, shopping

habits etc. We then find out they do not drive a car, so we end the questionnaire.

The command *ENDNGB means that data will be written, but the interview will be

marked as “not successful”.

*QUESTION 1 *CODES 61L1

Do you have a driver’s licence?

1: Yes

2: No *GOTO 998

*QUESTION 2

* Entire questionnaire here

*END

*QUESTION 998

Thank you for your participation thus far. Unfortunately, we

are only looking for people who drive cars. I therefore have

no questions for you.

*ENDNGB

*END

If a respondent completes our entire questionnaire, we consider them a

“complete”, a “successful” interview, which must be stored in the data and marked

as such. *END is a command that is therefore usually placed at the end of the

entire questionnaire, at the very bottom of your script.

*QUESTION 999

This concludes our interview. Thank you for your time and

consideration. Have a nice day.

*END

Assignment 6

Building on the previous created script end the questionnaire if the respondent is

younger than 18 years

Result Codes

Result codes are survey exit codes which you can use to track how respondents

exit the questionnaire. A result-code determines how the respondent left the

survey. Did they complete? Did they screen-out? Or did they simply not finish?

 26

We use a number of standard, system wide result codes. These codes cannot be

altered.

The most common codes are:

 Successful (18): these are respondents that completed the entire survey,

passed the screener and finished the questionnaire all the way to the last

question. The command to use is *END.

 Dropped out (101): these are respondents that didn’t finish the survey.

They either dropped out during the survey (101) or they closed their

browser (106).

 Screened out (19): these are respondents that didn’t pass our screening.

They either didn’t fit your research criteria, or they were no longer

necessary because we reached our quota targets already. The command

to use is *ENDNGB.

Result codes (exit codes) are used by fieldwork managers to monitor progress and

quality. Each completed, each “successful” interview is added to various targets.

When fieldwork is done, and the data goes to the data processing department,

they will use these exit codes to filter out the “successful” interviews for

processing and delivery of results. They will also perform checks on the “not

successful” and “aborted” interviews to see where and why they failed.

It’s important to make sure your questionnaire has proper exits.

Assignment 7

Building on the previous created script rescore the age questions into groups and

handle respondents refusing to disclose their age.

13. Temporary Variables

A question is a permanent variable. The answers to the question are permanently

stored in the datafile (or the O-file). ODIN also allows you to store temporary

information in variables. A variable is not a question. It’s a temporary ‘container’,

which captures information only during the interview.

The information stored in a variable is therefore only available during the

interview, inside the script and does not become part of the data. If you want to

permanently store the information in these variables, you will need to code these

variables into a dummy question, which is called a dummy question.

ODIN distinguishes two types of temporary variables. Text variables (variables

which contain text) and regular variables (variables which contain a code, a

number).

*TEXTVARS

A text variable will contain a piece of text. This can be the answer to an open-

ended question, or it can be the actual text of an answer option. You can also add

text to such a variable yourself.

 27

*TEXTVARS Gender

*QUESTION 1 *CODES 61L1 *SAVE Gender

What is your gender?

1: Male

2: Female

In this example we are storing the actual text of the answer, “male” or “female”,

inside a new variable, called “Gender”. We first define this text variable, before the

question is asked. We then ask the question and add *SAVE Gender to the

question. The text of the actual answer given is now stored in this temporary text

variable.

We can reference and display that text variable, by using the command *?.

For instance

*PAGE

So you are a *? Gender?

*VARS

You can also do this with numbers and punches. A regular variable will then

contain a number (from a number question) or the actual punch from a predefined

answer list.

*VARS Numkids

*QUESTION 1 *NUMBER 61L2 *MAX 10 *SAVE Numkids

How many children under the age of 19 do you have living at

home?

*QUESTION 2 *CODES 63L1 *IF [NumKids >= 1]

Do they all have their own room?

1: Yes

2: No

In our example we are using the command *SAVE which directly saves the

information to our temporary variable. We can also use the *PUT command to put

something inside a variable.

*VARS Age

*QUESTION 1 *NUMBER 61L2 *MIN 16 *MAX 99

What is your age?

*PUT Age Q1

All your questions will have numbers. This is called the Question Identifier, or

Question ID.

So:

*QUESTION 1

 28

*QUESTION 2

*QUESTION 3

… can be referenced throughout your questionnaire by their identifiers as Q1, Q2

and Q3.

Please note: Variables must have a logical, sensible name, which makes them

easily identifiable.

Please note: You can also create iterated variables or add an array to variables.

*Vars Brand[10]

You create one variable, with an array of 10. You can now reference these variables

as: Brand[1], Brand[2], Brand[3] etc.

Assignment 8

Building on the previous created script create a total awareness car brand

question using the spontaneous and aided awareness questions.

14. Storing Answers

We have discussed that we can store information in temporary variables, either as

text or as numbers. This is a useful tool during fieldwork, to display information in

questions, intros or answer options. The information stored however, is not stored

in the data. It will often occur where you do need to store information in data.

Let’s begin with making our lives easier. Most surveys will have questions that use

the same answer options. Questions where people have to like or dislike

something, or questions about brands for instance. Instead of constantly typing in,

or copying the exact same answer list inside ODIN Developer for each question

that uses the same answer options, we can create answer.

*LISTS

The *LIST command allows you to create a response list that can be used for

multiple questions, throughout your questionnaire. Our earlier example with cars

would then look something like this.

*LIST Cars

1: Audi

2: BMW

3: Citroen

4: Fiat

5: Ford

6: Hyundai

21: Other *OPEN *NOCON

29: None of these *NMUL *NOCON

*QUESTION 1 *CODES 61L29 *MULTI *RANDOM

Which of the following car brands have you heard of?

 29

*USELIST Cars

The *USELIST command adds the actual response list to the question.

When dealing with questions where answers from previous questions need to be

included or excluded, the “Other” and “None of these” options can become a

problem. We’ve solved that by making them *NOCON and *NMUL in the actual list.

You can achieve more flexibility by proceeding as follows.

*LIST Cars

1: Audi

2: BMW

3: Citroen

4: Fiat

5: Ford

6: Hyundai

*QUESTION 1 *CODES 61L29 *MULTI *RANDOM

Which of the following car brands have you heard of?

*USELIST Cars

21: Other *OPEN *NOCON

29: None of these *NMUL *NOCON

In the above scenario, we’ve left the “Other” and “None of These” options out of

the actual list and added them as separate options on the question itself.

Questions where an interviewer is reading out answers to a respondent, will not

include any “Other” options, so this means the list can be used for more

questions, without adding more programming or control.

*DUMMY

A dummy is a fake question. It’s a question that is never asked, but filled by

scripters, to permanently store information in the data. A dummy question can

contain anything, codes, numbers, even alphanumeric information.

Continuing with our example from above.

*QUESTION 1 *CODES 61L29 *MULTI *DUMMY

Total Brand Awareness

*USELIST Cars

21: Other

29: None of these

*QUESTION 2 *CODES 161L2

Thinking of cars, can you name the first brand that comes to

mind?

*USELIST Cars

21: Other *OPEN

29: None of these

*QUESTION 3 *CODES 171L29 *MULTI *RANDOM *CONTROL Q2 N

I am going to read out a number of car brands.

Which of these do you know?

*USELIST Cars

29: None of these *NMUL *NOCON

 30

We have asked first brand mentioned. We exclude that answer from the following

question, all subsequent brands with *CONTROL Q2 N, meaning show everything

except the answer given at Q2. Now we add these two questions together in the

dummy question, so we have Total Brand Awareness, stored in a single question,

our dummy Q1.

Please note: This makes for much easier analysis by your data processing

department once fieldwork is complete.

*INCLUDE/ *COPY / *EXCLUDE

The *INCLUDE command allows you to transfer data from a multi question into

another (dummy) multi question. The *INCLUDE command adds codes. So any

original codes already in the question are not overwritten.

The command *COPY allows you to do this for single questions and individual

codes. *COPY also allows you to do this for *ALPHA questions. The *COPY

command overwrites codes. Whatever was in the question before, will be

overwritten.

In our example, we will fill Q1, our dummy, with the contents of Q2 and Q3.

*IF [Q2 , 1-21] *INCLUDE Q1 Q2

*IF [Q3 , 1-21] *INCLUDE Q1 Q3

*IF [Q2 , 29 & Q3 , 29] *INCLUDE Q1 [29]

The *INCLUDE command allows you to copy an entire question into another

question as well as allows you to copy individual codes.

In our case we have added an *IF clause. We don’t want “None of these” copied,

since that answer is available twice.

So we only copy Q2 into our dummy if a brand is mentioned. We then do the same

for Q3. We only copy Q3 into our dummy if a brand is mentioned.

If a person selects “none of these” twice, at both Q2 and Q3? We copy the actual

“None of these” code into our dummy, namely code [29].

Our dummy, Q1, will now contain total awareness, a combination of Q2 and Q3.

Our dummy can now be used for future questions. For instance we want to find

out, out of all the brands of cars somebody is aware of, which one they would

consider buying?

*QUESTION 4 *CODES 171L29 *MULTI *CONTROL Q1 W *IF [Q1 , 1-20

]

Out of all the brands you know, which would you consider

buying?

*USELIST Cars

29: None of these *NMUL *NOCON

If our respondent knows at least 1 brand from the pre-coded brands, we will

include only the brands they know, from our dummy, *CONTROL Q1 W, and let

them select which of those they might want to buy.

 31

Another useful command here is *COUNT. You can count the number of answers

given to multi questions.

*VARS numb

*COUNT numb Q1

We create a variable, we then *COUNT our total awareness dummy and see if there

is more than 1 brand coded there. We store this in a variable called numb.

*QUESTION 41 *CODES 171L29 *CONTROL Q1 W *IF [numb > 1]

Out of all the brands you know, which one is your favorite?

*USELIST Cars

29: None of these *NMUL *NOCON

We only have to ask Question 41 if our respondent knows more than one car

brand, otherwise there is nothing to pick as far as a favorite is concerned.

The *EXCLUDE command is used to remove one or more codes from an existing

question and works the other way around. *INCLUDE can be used for all codes

questions (both multi and single), while *COPY can only be used for single

questions. *EXCLUDE can be used for both multi and single questions.

*EXCLUDE Q2 Q3 wil exclude all the answers given at Q3 from Q2.

*EXCLUDE Q2 [29] wil exclude code ‘29’ from Q2.

15. Repetition

It will often occur that you will have to ask a question, or a set of questions about

a specific brand, product or service. In our example from above, now that we’ve

stored our Total Awareness, we may want to know if our respondent can rate all

those car brands and give them a school figure, from 1 to 10.

This is done using a loop, or a repeat block.

Repeat Number

The operator ?R contains the current value of a *REPEAT loop, a number between

and including 1 and n where n is the value specified at the *REPEAT statement.

Note that this is not the iteration number - for example, in the third execution in

the loop the value of ?R is not necessarily 3. This is especially true for randomized,

controlled, rotated or inverted loops.

In nested blocks, the operator ?R returns the value of the loop where that is

currently being run. To access values from loops above or below the current, you

should use a question or a numerical variable to pass the value. The operator does

not exist outside the scope of a *REPEAT block.

?R is a system variable and cannot be changed (for example by using *SAVE or

*PUT) nor can it be displayed directly in question text using the *? command. Copy

the value to a variable another variable to access it (e.g. *PUT Temp [?R]).

Example using the repeat number

 32

*TEXTVARS paper

*QUESTION 2 *CODES 61L7 *MULTI

Which of the following newspapers do you know?

1: La Repubblica

2: La Stanza

3: The Mirror

4: The New York Times

5: Le Figaro

6: La Libération

7: None *NMUL

*REPEAT 6 *FIELD 68L12 *CONTROL Q2 W

*PUT paper Q2,?R

*QUESTION 3 *CODES 1

How often do you read *? paper?

1: Daily

2: Once a week

3: Once a month

4: Don’t know

*ENDREP

In nested blocks you have to transfer the repeat number ?R of the outer block to a

numeric variable first to be able to use it in the inner block.

Example storing the repeat value

*VARS X,Y,Z

*REPEAT 3

*PUT X [?R]

*REPEAT 2

*PUT Y [?R] ** this line is only necessary to display the

value of ?R

*PUT Z [X+?R] ** or *PUT Z [X+Y]

*QUESTION 1

*?X + *?Y = *?Z

*ENDREP

*ENDREP

*REPEAT

*TEXTVARS Car

*REPEAT 6 FIELD 61L12 *RANDOM

*PUT car Q1, ?R

*QUESTION 5 *NUMBER 1L2 *MAX 10 *IF [Q1 , ?R]

Can you please rate the car brands you know.

Think of a school figure from 1 to 10.

How would you rate *? Car

 33

*ENDREP

Please note: The FIELD is allocated when you fix the positions of your

questionnaire, before you go into field. You can read more about it below.

Please note: Inside the repeat block, the data positions are relative. So when we

have a FIELD of 61L2, 61-62 will be 1L2 and then 63-64 will be 1L2 etc. The positions

and length of the questions inside the repeat block are relative to the overall size

of the repeat block.

We first define our text variable, in which we will store, temporarily, the name of

the actual car brand, Car, so the interviewer or respondent know what car brand

they have to rate.

We then define our repeat block, we do this with the *REPEAT command. We have

6 car brands, so we define 12 positions, 6 x 2 columns for the *NUMBER question.

We want our respondent to rate the different car brands in *RANDOM order.

We then use *PUT to copy the actual text of the car brand from our dummy Q1 into

this temporary variable, Car. Each cycle through the repeat block is called an

iteration. Our loop has 6 brands, so 6 iterations, from 1 to 6. The internal ODIN

variable ?R stores the iteration number. So as we cycle through the repeat block,

we copy iterations 1, 2, 3 etc. into the temporary variable Car.

Question 5, inside the repeat block will be asked 6 times, *IF the brand is known

and stored in the Q1 Total Awareness dummy. As we cycle through the repeat

block, every time we check *IF [Q1] our dummy contains codes 1, 2, 3 etc,

using the same internal ODIN variable which holds the iteration number ?R.

*ENDREP ends our repeat block.

In this example we are using *IF to control Question 5, making sure it is only

asked if our respondent is indeed aware of that brand and has that brand stored

in our Q1 total awareness dummy.

There is another way to achieve this control.

*TEXTVARS Car

*REPEAT 6 FIELD 61L12 *RANDOM *CONTROL Q1 W

*PUT car Q1, ?R

*QUESTION 5 *NUMBER 2L2 *MAX 10

Can you please rate the car brands you know.

Think of a school figure from 1 to 10.

How would you rate *? Car

*ENDREP

As you can see, we can control our repeat block making sure only the brands

stored in our Q1 total awareness dummy are shown to the respondent, *CONTROL

Q1 W. We therefore no longer need the *IF [Q1 , ?R] check on Question 5.

Assignment 9

 34

Building on the previous created script add a question(s) for each car brand a

respondent knows if the respondent has ever driven a model of that brand.

*MATRIX

Please note: *INV is no longer supported.

 35

 36

Please note: This is the way things look in the ChicagoTemplate.

Assignment 10

Building on the previous created script add a Matrix question asking for a rating,

of 1-10, for all known car brands.

Assignment 11

Building on the previous created script rework the Matrix question created in the

previous assignment so all car-brands that are known AND driven by the

respondent are scored on the 10-point scale.

*BLOCK

 37

Assignment 12

Building on the previous created script add a block asking if the respondent

owned one of the driven brand and if so which one.

16. ODIN Naming Conventions

Names of variables, subroutines and lists have to be unique and may consist of a

maximum of 12 characters. Only letters, underscores and numbers are allowed.

The first character must be a letter.

Questions

Question numbers are made up of positive numbers (>= 1). No alphabetic (except

X, see below) or other characters are allowed. Each question number has to be

unique within one (sub-) questionnaire. Question numbers can be used

indifferently. The NIPO ODIN Developer allows you to renumber the questionnaire,

but this is not deemed necessary. In this case the question numbers are not

defined, and routing has to be done afterwards. When you renumber the

questions, question numbers will be inserted.

The highest question number is 2147483647.

The *QUESTION command may be abbreviated to *Q.

Example question definitions

Valid question definitions Invalid question definitions

*QUESTION 1 *QUESTION 0

*QUESTION 2 *QUESTION –2

*Q 3 *QUEST 3

*QUESTION 2501 *QUESTION 25a

*QUESTION 109 *QUESTION 10.9

*QUESTION 11001 *QUESTION 11.001

*QUESTION 102 *QUESTION 1-2

*QUESTION 2147473647 *QUESTION 2234567890

*QUESTION 1234567890 *QUESTION 1 234 567 890

Data Fields

In the NIPO ODIN Scripting Language it is not necessary to define the starting

position of a data field when you define a question. Only the length of the data

field is required. NIPO ODIN keeps track of all the positions used in the

questionnaire. In the NIPO ODIN Developer, you can automatically insert the

starting positions using the Fix Positions command. Omitting starting positions is

not allowed for questions that refer to data fields in the sample table. These

starting positions always have to be defined.

In a closed, but not multiple question the number of digits of the highest code

number defines the minimum length of the data field. In a closed, multiple

question the highest code number (rather than number of codes) defines the

minimum length of the data field.

 38

In numeric questions the minimum and maximum length depend on the answer

that you expect. The maximum size is approximately 16 positions, including

decimals and a floating point.

The highest position for a data field is 99999. Make sure your analysis program can

handle the data size.

Please note: Always fix the positions of your questionnaire/script BEFORE you

upload it to Nfield.

The first 60 positions of the data filed are reserved for system data

Answer Codes

Answer codes are recognized by a number followed by a colon. This number has to

be the first non-blank character at the beginning of a line. Code numbers can be

used indifferently. Code numbers have to be unique within a question. If the code

text does not fit on a line, it is allowed to continue on the next line. All the

following lines will be considered as part of the code until the first blank line.

Answer code numbers may range from 0 to 2147483647 for single-coded questions

and from 1 to the remaining positions available in the U-file for multiple-coded

(*MULTI) questions.

*HEADING texts may be provided to group sections of codes, but headings are not

considered part of the answer labels.

Example

*QUESTION 1 *CODES L2

This is the question text.

Long lines in question and code texts will automatically be

truncated at complete words if the line exceeds the screen

width.

Question text and codes may contain empty lines. Empty lines

between codes are removed if *AUTO command is used AND the

text is too long to fit on the screen.

1: This is category one

2: This is category two

5: This is category

 five

7: This is category seven

 running over three

 lines

This line will be considered as text

11: This is category eleven

*END

 39

Variables

You can store a text or a value in a variable to display in a question or to use for

routing. Variables have to be defined with *VARS or *TEXTVARS before they may

be used. Variable names are not case-sensitive.

A variable can be filled with the *PUT or the *SAVE command. Its content can be

displayed with the *? operator. Note that the content of the variable depends on

the type of variable.

A numeric variable (*VARS) may contain any value. Use the *FORMAT command to

change the on-screen appearance of numeric values. When text or a text variable

is saved in a numeric variable, the NIPO ODIN syntax check will give a warning

message.

*TEXTVARS defines a text variable and may contain a text of unlimited length. The

text may contain CR/LF which will be used when displaying the variable. Variables

may not contain NIPO ODIN commands, except for *FONT.

Note: The content of variables is not stored in the data file automatically. So make

sure that if you base questions or routing on a variable, you store this information.

Example 1

*TEXTVARS Gender

*QUESTION 1 *CODES L1 *SAVE Gender

Interviewer: Mark gender:

1: Male

2: Female

If code 1 is selected the text variable Gender will contain the text Male. If code 2

is selected, the variable Gender will contain the text 'Female'.

Example 2

*VARS Gender

*QUESTION 1 *CODES L1 *SAVE Gender

Int. type gender of respondent

1: Male

2: Female

If code 1 is selected, the numeric variable Gender will contain the value 1. If code

2 is selected, the variable Gender will contain the value 2.

Example 3

*TEXTVARS Gender

*IF [Q1,1] *PUT Gender "man"

*IF [Q1,2] *PUT Gender "woman"

If question 1 contains code 1, the variable Gender will contain the text 'man', else

the variable Gender will contain the text 'woman'.

Example 4

*VARS Gender

 40

*IF [Q1,1] *PUT Gender "man"

*IF [Q1,2] *PUT Gender "woman"

The syntax check gives a warning message, because a text is written in a numeric

variable. After the filter is checked, the contents of the variable will be 1

(regardless of the outcome of the filter).

Example 5

*VARS Age

*QUESTION 2 *NUMBER L2 *SAVE Age

What is your age?

After question 2 is answered, the variable Age will contain the value that entered

at Q2.

Example 6

*TEXTVARS Age

*QUESTION 2 *CODES L1 *SAVE Age

What is your age?

1: 18 - 24 years

2: 25 - 34 years

3: 35 - 44 years

4: 45 - 54 years

5: 55 - 64 years

6: 65 years or older

9: won't tell

After question 2 is answered, the variable Age will contain the code text of the

code that was selected.

Example 7

*VARS Age

*QUESTION 2 *CODES L1 *SAVE Age

What is your age?

1: 18-24 years

2: 25-34 years

3: 35-44 years

4: 45-54 years

5: 55-64 years

6: 65 years or older

9: won't tell

After question 2 is answered, the variable Age will contain the code number of

the code that was selected.

Example 8

*VARS SelectBrand

*TEXTVARS Brand

*QUESTION 31 *CODES L1 *DUMMY

 41

Here 3 brands are specified. The system will select 1 brand

randomly.

1: Brand A

2: Brand B

3: Brand C

** Select a number below 3 and then add 1 to the result

** (this will randomly select 1 through 3)

*PUT SelectBrand [(RAN 3) + 1]

** Now put the category text of the dummy question in

** the text variable Brand

*IF [SelectBrand = 1] *PUT Brand Q31,1

*IF [SelectBrand = 2] *PUT Brand Q31,2

*IF [SelectBrand = 3] *PUT Brand Q31,3

** Now save the contents of SelectBrand in the datafile.

** If you forget to do this, you will not be able to know,

** which brand was selected during the survey.

*COPY Q31 [SelectBrand]

17. Look and Feel

We briefly mentioned that - as a scripter - you should consider your audience.

You should also consider your platform.

You need to consider WHO will be filling in your questionnaire.

Are they interviewers or are they respondents? And if they are respondents? What

kind of respondents? The people who will fill in your questionnaire are your

audience.

You also need to think about HOW they will be filling in your questionnaire.

Are respondents filling it in themselves on their PC, on their laptop, on their phone

or with pen and paper? Are interviewers conducting interviews and filling in your

questionnaire via telephone, an app, or via pen and paper? The mode of filling in,

telephone interview, personal interview with an app, pen and paper, self-

completion via laptop, PC or pen and paper. That is called your platform.

Finally: if interviewers are filling in your questionnaire on location, you need to

consider WHERE they are filling in your questionnaire.

We have so far focused our attention on understanding basic ODIN commands to

build a questionnaire consisting of various types of questions and some logic to

make the questionnaire run smoother.

Now that you understand the basics we will introduce a new element, namely Look

and Feel. ODIN was originally developed as a straightforward programming

language for telephone interviewing. Using regular ODIN code will create a very

basic looking questionnaire, which is ideal for telephone interviewing and allows

for fast input, while talking to people on the phone. If you are dealing with

 42

respondents directly however, or interviewers who deal with respondents face to

face… the way your survey looks and feels becomes much more important.

To give you a simple example: a brand list with 100 brands will never work when

fieldwork is conducted using a mobile phone. Never. It will simply not fit and make

for a horrible experience for the respondent. We can name numerous other

examples.

A questionnaire with a functional, yet nice look and feel will mean a better

experience for the person who fills in the questionnaire. When dealing directly

with respondents it makes for a more engaging experience for those respondents

and makes for higher quality data.

The look and feel of a questionnaire in Nfield CAPI for Android is decided by two

factors:

 The template in use.

 The theme applied to the selected template.

Templates and themes must be selected in NIPO ODIN script. This section provides

an introduction to templates and themes and examples for use.

What are templates for?

In ODIN you use templates to define the structure of your questionnaire pages.

Templates allow full control over the placement of text and components on

questions.

Templates can also change the rendering of questions. For example, a numerical

question is by default rendered as an input box where a number may be entered.

Using a different rendering, a numerical question may be changed into anything

conceivable within the template, such as sliders, turn-knobs, spin wheels and drag

and drop items, which all can help boosting the overall response to a survey.

Each template comes with its own template-specific rendering controls,

integration with social network services (if any), and requirements for creating or

changing themes.

What are themes for?

Using themes, you can apply changes to the look and feel of existing templates

and customize them to the requirements of your research customer.

Themes set styling, colorization and other fine-grained customizations to the

template in use. Themes differ from templates in the sense that where templates

set the overall look and feel and introduce rendering controls for the various

question types, themes are used to tune the template to the requirements of the

survey, its client and the users.

Themes are based on a template. This means that a theme is specifically designed

to work with one template and cannot work with another. Themes must be

uploaded in the Nfield CAPI for Android Manager prior to use, but the NIPO ODIN

script sets which theme is used when and where during an interview.

 43

We offer extensive and interactive online documentation on how to render

questions, making them look and behave differently so as to style your

questionnaire.

Interactive Template Documentation

Please note: Our online and interactive documentation shows you the various

types, options, what they look like on a pc, laptop, tablet or phone. It also allows

you to copy out the ODIN script.

Please note: We urge you to take the time, study the interactive documentation

carefully and familiarize yourself with the various options and the code.

Please note: As a starting scripter, we advise you to focus on scripting your

questionnaire first. Properly test it. Make sure everything is working as it is

supposed to. Check that data is being correctly stored. Only after that, add the

look and feel.

Please note: styling a questionnaire is never necessary when dealing with

telephone interviewing or data entry of pen and paper questionnaires. In those

situations, you will want a basic, efficient ODIN script where an interviewer can

input data.

Please note: When dealing directly with respondents - self completion - also

called web interviewing (CAWI) you will want to style your questionnaire so as to

engage the respondent.

Please note: When dealing with interviewers who are dealing directly with

respondents, either during house visits, or at some location, you will want to style

your questionnaire so as to make sure it all fits on a mobile device and is easy to

use for interviewers to quickly input data.

*TEMPLATE

*TEMPLATE "[templatename[;themename]]"

Templates and themes are typically selected at the start of the script. Using

different templates in a single questionnaire is not recommended, but themes

may be changed to appeal to certain demographics or characteristics of the

respondent, or device used.

At present the most common used template is called NfieldChicago.

So:

*TEMPLATE “NfieldChicago”

… will have to appear at the very top of every script.

You can switch, during your script from templates and themes, allowing you to use

multiple templates and themes in the same script.

There are 2 ODIN commands that you can place on every individual question, to

determine their look and feel.

https://nfieldchicago.nfieldmr.com/

 44

*UIRENDER

Sets the rendering control (visual representation and input interface) for all

questions of a specific question type. *UIRENDER determines the overall look at

feel of a type of question. So it determines how *OPEN, *NUMBER, *ALPHA and

*CODES questions look and behave on any screen.

*UIRENDER "[questiontype]=[renderingcontrol]"

*UIOPTIONS

Sets the options for the current question with the currently active rendering

control of a Question. So these regulate your options within a given question type.

*UIOPTIONS "[name1]=[value1];[name2]=[value2];{...}"

Look and feel depends greatly on a client’s wishes, corporate branding and your

audience.

Whatever styles and behaviour you choose for your questions: make sure to be

consistent. If you’re going to do a brand list with buttons? Do that brand list with

buttons all the time. If you’re doing a scale from 1 to 5 with a slider? Then do it

with a slider all the time.

Consistency makes for faster response and input as well as higher quality data.

We’re doing data collection, we’re not doing web design, so be consistent, let

styling be functional, consider your audience and consider the platform.

*TEMPLATE “NfieldChicago”

*UIRENDER “*NUMBERr=Slider”

*QUESTION 110 *CODES 61L3 *MIN[1] *MAX[10] *UIOPTIONS

“instruction=NumericalSlider”

What percentage of total budget did you spend on your

accomodation?

*END

Please note: *UIRENDER options must be reset to return to the default setting.

*UIOPTIONS do not have to be reset.

Assignment 13

Building on the previous created and using the NfieldChicago template create an

introduction in the Chicago look and feel (Welcome page).

Redesign the block question created in Assignment 12 into a NfieldChicago “Mixed

matrix” asking for each driven car-brand if the respondent owned that car-brand

and if so what model of that brand.

 45

18. Background Variables

Market research is rarely done on just some random group of people. There is

always a target audience, a specific group of people we wish to interview to

investigate <topic X>. Usually we will be provided with a sample. A sample is a file

that contains potential respondents. People whom we’d like to participate in our

survey. The sample will usually be proprietary, meaning somebody else owns the

sample and they gave it to us (perhaps our client) or they sold it to us (a sample

provider).

Sample is quite expensive. We will have to invite or approach a lot of people, a lot

of sample, to achieve only a few successful interviews. We want to approach as

little people as necessary. The longer fieldwork runs, the more expensive our

study becomes.

The sample file itself will contain respondent specific information, personalized

information about the respondent.

A sample file will often be some type of excel file, which looks a bit like this.

Id name email telno gender

00001 John Smith j.smitth@hotmail.com +4499999999 M

00002 Jane Stone j.stone@gmail.com +4499999991 F

Etc.

The various fields in this file, NAME, EMAIL etc, are called sample variables. The

people in the file and the file itself are called sample, and the information

contained therein, are called sample variables. Sample variables often provide

valuable socio demographic or more personal information about our respondents.

Often enough this information is later used for analysis, by the data processing

department, the researchers, even the client.

We therefore read these variables into our ODIN script, into our data, in the

background, as our interview begins. That’s why these sample variables are also

sometimes called background variables.

You import the sample variables with one simple command.

*SAMPLEDATA name, email, telno, gender

By simply defining them, these variables are now imported into the ODIN script

and can be used in the survey as variables.

*PAGE

According to our information, your gender is *? gender.

As we have learned, variables only store information during the interview, they

don’t store anything in the data. Only questions and their answers are stored in

the data. If we wish to import these sample variables into our data file, we have to

create dummies.

*QUESTION 101 *ALPHA 61L100 *DUMMY

Name

*COPY Q101 *? name

*QUESTION 102 *ALPHA 161L100 *DUMMY

Email

mailto:j.smitth@hotmail.com
mailto:j.stone@gmail.com

 46

*COPY Q102 *? email

*QUESTION 103 *ALPHA 261L100 *DUMMY

Telno

*COPY Q103 *? telno

*QUESTION 104 *CODES 361L1 *DUMMY

Gender

1: Male

2: Female

*IF [*? gender = “Male”] *INCLUDE Q104 [1] ; *ELSE *INCLUDE

Q104 [2]

We have created 4 dummies, each with a question type (*ALPHA/*CODES) that fits

their specific fields. We then use *COPY for *ALPHA questions (don’t use

*INCLUDE). Our Gender background variable we fill with an actual code, ‘1’ or ‘2’,

with an *IF clause.

You can also update your sample, using the sample *SAMPLEDATA command. Let’s

say we received an old sample, we don’t know exactly if their telephone numbers

are still correct so we ask them.

*SAMPLEDATA telno

*QUESTION 103 *ALPHA 261L10 *SAVE telno

What is your telephone number?

Please note: This will update the actual sample file inside our interviewing

systems. It will not change the file we were initially given by the client or the

sample provider. The changes, the update occurs only in our systems.

As a beginning scripter, you will want to discuss what to import with your

researcher, the client, the fieldwork department, and the sample provider.

19. Interviewing the “right” people

Quota

It will rarely happen that we’re just interviewing random people from anywhere,

how many we may find.

Typically every survey has a target. This target is the total number of people you

want to interview for the entire survey. In market research, this target is called the

total target.

In most surveys you do not just want to ask for example a random set of people

their opinion.

You want to make sure these respondents represent the group you are seeking to

answer questions for.

This is achieved by using quotas.

 47

A quota is a specific subset of respondents with specific characteristics. This can

be anything: a zip code, a city, a gender, an age group... anything. Quotas allow you

to specify the subgroups for your survey and to set targets for each of them.

By referencing the quotas in your questionnaire script, you can screen out

respondents during the interviews.

A quota can be this:

Total target: 100

Age: Young 40

Age: Old 40

In this case 100 respondents will be interviewed. At least 40 young respondents, 40

old respondents and 20 respondents that could either be young or old.

We offer more extensive documentation and tutorials on how to work with quotas.

Let’s first consider what to use quotas for and when to use them. Quotas are a

means to guarantee a distribution of sample you wish to interview. So when a

client wants a distribution of 50% Male and 50% Female, you’d use quotas.

If you are merely trying to collect as much data, as many respondents as you can,

then you would not use a quota.

If you are trying to find a very specific, hard to reach group, for instance all the

people who bought a red car in Amsterdam between 2010-2011? Then you’re

probably going to be working with a complete customer/address list. You would

then not use a quota.

Ask yourself, based on your target audience, your sample and your distribution: do

I need to use a quota? If you do, then you begin by setting up the quotas, their

cells and their targets.

In our example, we will be interviewing 100 people. Our survey will have an even

distribution of men and women and age groups. To achieve this, we will be

creating a quota for gender and give male and female a target of 40 each. And we

will be defining different age groups.

Quota Variables, Quota Cells and Quota Check

We will start by defining our quota variables. A variable is a definition of a quota,

in this example they will be “Gender” and “Age”. Each quota variable consists of

quota cells, in this example the cells for Gender are: Male and Female and for Age:

Young and Old.

The quota variables and cells that you define in Nfield Online need to be called

exactly the same as in the ODIN script. When you define a questionnaire variable

in the Nfield Online Manager that is called ‘gender”, you must also have a variable

in ODIN called ‘gender’. When you enter a quota variable name, the Nfield Online

Manager automatically suggests a questionnaire variable name for you.

In the below example you can see a simple quota set up in ODIN script. It defines

the questionnaire variable “Gender” which is filed by data from question 1. The

actual contents of the quota-variable, “Male” and “Female” are called quota-cells.

 48

*SAMPLEDATA Gender, Age

*QUESTION 1 *CODES L1 *SAVE Gender

Are you male or female?

1:Male

2:Female

*QUESTION 2 *CODES L1

What’s your age?

1: 16-24

2: 25-49

3: 50-64

4: 65+

*IF [Q2,1-2] *PUT Age “Young”

*IF [Q2,3-4] *PUT Age “Old”

Working with quotas always means collaborating with your fieldwork department.

They will be using the exact same quota variables and cells, spelled exactly the

same, to keep track of progress and performance. Our ODIN variable Gender will

be used to count the number of people who fit this cell, it will be used to count

the number of Males and Females during fieldwork. The same goes for our Age

variable.

If you’re doing an online survey or a face to face survey where interviewing is

conducted on an app, using NIPO Nfield? Then you will want to take a look at the

way quotas are set up by the fieldwork department using Nfield.

Please note: Take into consideration that once your survey is published you

cannot change quotas or add new quota variables. You cannot change the quota

frame, you can only change the targets.

Please note: All quota targets are minimum targets. If you are using quotas to

achieve a certain distribution, this means you will most likely be weighing your

data afterwards to resemble a specific universe. Weighing is done by the data

processing department. This means that you will want to achieve your minimum

targets with some oversampling to be safe.

Please note: The actual quota check takes place inside the ODIN script, using the

*STRAT command. The respondent is usually checked early in the script to see if

they fit our particular profile. This check is conducted as soon as the *STRAT

command executes. The respondent is checked against their own quota and then

checked to see if they may fit into another cell. If a respondent is accepted and

still needed to reach our targets the respondent continues with the interview. It

therefore makes sense to use the *STRAT command right after the quota has

been determined. Once a person falls within a specific quota, you will want to

check how many people you still need to interview in that quota. So you first

identify a person and stick them into a quota cell, you then check that person

against your overall target for that cell. So a person will become male and old first,

you then check how many more male and old respondents you still need to

interview.

The quota is counted only when the respondent completes the entire

questionnaire. So your total counts and numbers go up, once a respondent

finishes the interview and returns with a “successful” exit code (or a “screened-

out” or “quota full” code).

 49

If a respondent pauses the interview by closing their browser, the respondent can

continue where they last left the interview. Before they return to their interview

however, the quota check is conducted again, to check if we still need this person.

If the quota cell this person was accepted for is already full, the person can be

rejected anyway, even though they were accepted before.

From our example above.

*SAMPLEDATA Gender

*QUESTION 1 *CODES 101L1 Are you male or female?

1:Male

2:Female

*IF [Q1,1] *PUT gender "Male"

*IF [Q1,2] *PUT gender "Female"

*STRAT 999

*QUESTION 2

We are conducting a study about cars.

Our study will take a maximum of 10 minutes.

** Questionnaire

*QUESTION 998

Thank you for your participation, enjoy your day.

*END

*QUESTION 999

I am sorry you do not fall into the group of people we wish to

question.

We thank you for your participation.

*ENDST 21

Please note: *ENDST means end stratification. It’s ending the questionnaire for

the people who do not meet our quota-requirements. The code “21” means “quota

full”. The code is our result code.

We want 40 males. We first check into which quota cell the respondent falls. If it’s

a male, the *STRAT command checks the servers and fieldwork totals to see how

many males are still needed for our study. If we already have 40, then the *STRAT

command will return with “sorry, quota is full”. The 999 redirects the respondent

to a fake question, exiting the questionnaire as ‘not successful’.

When the *STRAT executes, we are performing a quota check, on our quota

variable, checking its quota cells, against what has been already collected during

fieldwork.

Assignment 14

Create this interlocked online quota frame for Gender and Age:

 50

Total: 10

 Male: 5

Male <18: 2

Male 18-35: 2

Male 35+: 1

 Female: 5

Female <18: 2

 Female 18-35: 2

 Female 35+: 1

Create a new script filling this quota frame and ending the questionnaire and

quota full when the quota cell has been reached.

20. Future Proof (Future Waves)

It will happen quite often that a study is conducted more than once. Perhaps once

a month, perhaps once a year. This means that your script must be futureproof.

Making a script futureproof is nearly impossible, but there are ways you make sure

your script can be used for future research, by other scripters, researchers and

even agencies.

Naming Conventions

You can give (text) variables any name you want. Please give them sensible names.

So the variable that counts the number of cars a respondent knows should not be

called X1122, but TotalNumCars for instance.

If there are several scripters working in your company, you may wish to maintain

so called naming conventions, making sure all your scripters name their variables

the same way. That makes it easier to pick up scripts from colleagues.

Allocate Enough Space

As we have seen, brand lists can be quite lengthy. And as research continues, new

brands may be added, other brands may be removed. We have seen that we can

manage this by maintaining master brand lists in the questionnaire. Using the

*LIST command means you can quickly add new brands in a single location, just

in the list, and all your questions using that list, will be fine. If you do not use lists,

you will have to make changes to numerous individual questions.

The trick to apply is to make sure your last codes: Other, Don’t know and None of

the above, always receive high numbers (punches), like so:

*LIST Brands

1: brand 1

2: brand 2

3: brand 3

4: brand 4

997: Other *OPEN

998: Don’t know *NMUL

999: None of these *NMUL

Please note: This also means I need to allocate a length of 999 for the questions

that use this list. Now, 999 is a crazy high number. It will be very rare that a list

 51

goes up to 999 brands, because it then becomes difficult to manage. But use 197 to

199 then. This way you will allocate enough space in the data file for future

research. When research is conducted several times a year, using a similar

questionnaire, this is called a wave. Each time the research is conducted, you’re

conducting a new wave. By allocating enough space, you can maintain data

integrity for future waves.

*QUESTION 1 *CODES 10L999 *MULTI *RANDOM

Which of the following brands do you know?

*USELIST Brands

In our first wave, we may begin with just 21 brands. But we can simply add brands

as the research continues. As brands are removed, you can simply remove the

entire line.

*LIST Brands

1: brand 1

2: brand 2

** 3: brand 3 ** Removed in wave 2, feb 2018

4: brand 4

997: Other *OPEN

998: Don’t know *NMUL

999: None of these *NMUL

Comments

As a beginning scripter it is important to remember that your logic, might not be

clear to all other scripters. It is therefore important to add comments to your

code. This will help your colleagues understand what it is you are doing, but will

also help you remember what it is you did, if one of your scripts ever returns a

year later.

In ODIN you can add comments by using the ** command.

Whatever you type after that is considered a comment.

*SAMPLEDATA Gender

*QUESTION 1 *CODES 101L1 Are you male or female?

1:Male

2:Female

** Filling gender sample variable for quotacheck

*IF [Q1,1] *PUT gender "Male"

*IF [Q1,2] *PUT gender "Female"

*QUESTION 1 *NUMBER 61L2 *BUT 99 "Does not want to say"

What is your age?

*QUESTION 2 *CODES 63L1 *DUMMY

Recoded age to categories.

1:<18

2:18-25

 52

3:26-35

4:35+

** filling categorized age dummy

*IF [Q1 < 18] *INCLUDE Q2 [1]

*IF [Q1 >= 18 & Q1 <= 25] *INCLUDE Q2 [2]

*IF [Q1 > 18 & Q1 <= 35] *INCLUDE Q2 [3]

*IF [Q1 > 35] *INCLUDE Q2 [4]

Using comments makes life easier for everybody: yourself, your colleagues, as well

as our Global Support staff, should you ever require assistance.

21. Logical Expressions/Operators

NIPO ODIN supports the use of expressions in questionnaires. An expression may

indicate all sorts of data but will always result in a value. Expressions are used in

two different ways:

 As a boolean; the result of the expression is either false (the expression

has as result value 0) or true (the expression has as result the value 1).

 To make calculations or manipulations with a value as result.

Some commands will require or allow for an expression as argument. Expressions

have to be enclosed in square brackets.

Expressions are evaluated from left to right and operators apply to the operands

immediately left and right. NIPO ODIN expressions do not follow the regular

precedence rules! If a left-to-right evaluation is not appropriate, you can use

parenthesis () to evaluate an expression first.

Expression Operators

Operator Description Use Note

Q Question reference Qn Reference to question n or
its contents

L Length of field nLm Position n, length m

F Field test QxFn Contents of field (cell)
number n within form-
question x

, code-test Qx,n 1 if present, otherwise 0

- code-string Qx,n-m Code string

- minus sign -n Negation of n

not #Qx 1 if no answer in question
x, otherwise 0

negation #n 1 if value n not true,
otherwise 0

+ add n+m Sum of n and m

- subtract n-m Difference of n and m

* multiply n*m Product of n and m

/ divide n/m Division of n and m

& logical AND n&m 1 if both not 0, otherwise 0

\ logical OR n\m 0 if both 0, otherwise 1

RAN random value RAN n Random value from 0 up to
and including n-1

= equal to n=m Results in 1 if true or 0 if
false

< less than n<m Results in 1 if true or 0 if

 53

false

> more than n>m Results in 1 if true or 0 if
false

<= less than or equal to n<=m Results in 1 if true or 0 if
false

>= more than or equal to n>=m Results in 1 if true or 0 if
false

<> not equal to n<>m Results in 1 if true or 0 if
false

?R repetition number ?R current (logical) repetition
number

TO Range n1 TO n2 Range n1 through n2

; separate ranges n1 TO n2 ;

n3 TO n4
Range n1 through n2 or n3
through n4

QxM order of mentions in a *MULTI question QxM

QxR display order of a question, when using *RAN,

*INV or *ROT
QxR

QxMy order of mentioning number y in a *MULTI

question
QxMy

QxRy display order Used in combination with
*ORDERnumber y of a question, when using
*RAN, *INV or *ROT

QxRy

Question reference

The reference to a question by means of Qn where n represents the question

number. For example, Q10 references question 10. If it concerns a code test then

more code values may occur; these will be treated as a logical or.

Values n or m

The values n or m may represent any of the following:

 Number

 Expression or variable

 Text enclosed in double quotes with, possibly, the embedded contents of

a variable

Examples of Expressions

Examples of expressions are presented here. Note that expressions are always

specified between square brackets. The expressions in these examples may be

either assigned to a variable or applied to an *IF filter.

Expression Examples

Expression Results in

[100] The value 100.

[RAN 100] A random between 0 and 99 inclusive.

[Total[3]] The value stored in the third element of the number array TOTAL.

[TOTAL2 * 3 + 10

]
the value stored in the variable TOTAL2, multiplied by 3 and then increased by
10.

[Q11,1] 1 if code 1 was marked in Q11, otherwise 0.

[Q12,1,2,3] 1 if any of the codes 1, 2 or 3 were marked in Q12.

[Q13 >= 18] 1 if the value in Q13 is equal to or larger than 18.

[Q11,1 \

Q12,1,2,3]
1 if code 1 is marked in Q11 or if code 1, 2 or 3 is marked in Q12.

[Q12,1,2,3 & Q13

>= 18]
1 if code 1, 2 or 3 is marked in Q12 and Q13 is equal to or larger than 18.

[Q12] The value of Q12 if Q12 is a single-coded or numerical question; the highest
marked code if Q12 is a multiple-coded question.

[Q13 = Q14] 1 if the (highest) value of Q13 is equal to the (highest) value of Q14

 54

[#(Q5 \ Q6) & Q7

= 1]
1 if either Q5 or Q6 does not contain a value and Q7 equals 1. The brackets are
required to let the expression evaluate Q5 and Q6 first.

[Q5 , 1 TO 3] 1 if any of the codes 1, 2 or 3 are marked in Q5.

[Q5 , 1 TO 3 ; 6

TO 8]
1 if any of the codes 1, 2, 3, 6, 7, or 8 are marked in Q5.

Common Mistakes in Expressions

This section describes common mistakes made in expressions, where a syntax

check does not reject the syntax used but where a misunderstanding exists on

how the expression is evaluated. These examples focus of filtering constructions.

Incorrect expressions and how to correct them

Incorrect
expression

What it was
intended to do

What it does Correct
expression

*IF [20 < Q2

< 40]
Check if Q20 is
between the
values 20 and
40.

This firsts checks if 20 is smaller than Q2 (result
0 or 1) then if the result is smaller than Q40.

*IF [Q2 >

20 & Q2 < 40

]

*IF

[Q20,3\4\5]
Check if Q20 has
code 3, 4 or 5
marked.

This checks if Q20 has code 3. Then it checks if
either the result of the expression, or 4, or 5 are
true. Any value above 0 is always considered
true, therefore the expression always results in
1.

*IF [

Q20,3,4,5]

*IF [

Q21=1,2,3]
Check if Q21 has
code 1, 2 or 3
marked.

This checks if Q21 is equal to the expression
1,2,3. The latter expression checks if position 1
in the U-file contains a 2 or a 3.

*IF [

Q21,1,2,3]

*IF [Q21 =

1-3]
Check if Q21 has
code 1, 2 or 3
marked.

This checks if the value of Q21 equals -2 (1-3). *IF [

Q21,1,2,3]

*IF [#Q21 =

1]
Check if Q21 is
not equal to 21

This first checks if Q21 is not empty, then
compares the result to 1. In other words, the
expression returns 1 if Q21 is not empty.

*IF [#(Q21

= 1)]

22. Testing

Once your script is finished, you must thoroughly check and test it.

Check

Your first test is a syntax check. Simply select “Check” inside the ODIN Developer.

Your questionnaire will be compiled into a real executable program. During that

compilation process your script is checked for syntax errors. A syntax error is a

piece of ODIN code that was “written” the wrong way, just like regular spelling

errors. When you press “Check”, the ODIN parser will flag all the errors, including

the line numbers on which those errors occur. The idea is to walk through all your

errors, make the necessary corrections and run the “Check” again. This is a circular

process that you repeat until you end up with 0 (zero) errors.

Please note: The ODIN Developer only checks for syntax errors, ODIN code that was

“spelled” the wrong way. It does not check for logical errors. Any errors in your

questionnaire logic you will have to detect and solve by physically testing your

script.

 55

Run

In the same menu, inside the ODIN Developer, select “Run”. Please note that this is

for basic checking and testing only! We recommend you test using Nfield, not

ODIN.

The next step is to check all the spelling of the actual question- and answer texts.

You must check the interviewer instructions, or respondent’s instructions. And

finally you check your script logic. By script logic, we mean the code that you have

built around the various questions and answers. If you are filling a dummy with 2

questions? You will need to check that the dummy indeed gets filled. If you want

to randomize an answer list? You will need to check that it’s indeed randomized.

You do this by running through your own script various times. Try the different

responses and see if your routing all works out. If you are storing information in

variables, it makes sense to display some of these variables during testing to make

sure they get properly filled. As shown above, you show the various variables by

using the ? *Variable command.

Generate Dummy Data

As we explained above, there are two main ways to program using the ODIN

Developer. You can insert questionnaire objects, by right click and then select

“Insert” followed by what object you wish to insert. Especially for beginning

scripters, this saves a lot of time in actual scripting. As you do this you will notice

that the ODIN Developer doesn’t allocate any data positions. If you insert a

“Coded” question, it will show up as this:

*QUESTION ? *CODES

The idea is to build your questionnaire first and to worry about data positions

later. Once you’re done you can select “Fix” inside the ODIN Developer. The “Fix”

fixes the data positions and automatically allocates enough space based on your

answer lists and types of questions. Once ODIN compiles and fixes the data

positions you can generate dummy data. These are fake interviews conducted by

ODIN. The idea is to run some 100 fake interviews so you can test if the data is

being punched correctly. If you are storing the name of some brand in an *ALPHA

question with 25 positions of length? Then you want to check the actual data file

and make sure that there is indeed 25 positions of text in that file.

After you’ve used “Fix”, you can generate dummy data.

The ODIN Developer then generates a fake data file. This is called an U-file. Your

ODIN questionnaire will be called NameQ. Your data file will be named NameU and

your open answers file will be called NameO. The U file and the O file are your data.

The Q file is your questionnaire.

You can then select “File” and “Open Data File” to physically look at the datafile.

Each line in the datafile is called a record. Each record is an interview where we

have written data for. It’s a simple matter of running your cursor along a single

line of data. If you have allocated 61L1 for gender? Then at position 61 you should

only find 1s and 2s for Male and Female. If you have allocated 62L2 for age from 16-

99? Then you should only find 16-99 in positions 61-62 etc.

Once you have checked the syntax, physically tested the questionnaire, and made

sure all is being punched correctly in the data, you can begin a “real” test.

 56

What does it look like?

As stated before. You need to consider your audience and your platform. Who will

be filling in this questionnaire: interviewers or respondents? And how will they be

filling it in? Via an app, via telephone or on a PC/laptop or handheld device?

It’s now time to test your questionnaire as if you’re a respondent, or an

interviewer, using the channel the interviews will be conducted on.

For personal interviewing, where an interviewer speaks to respondents in person

and then inputs the numbers via an app, using data-entry? You will want to test

your questionnaire, using the actual app, to make sure all looks okay. You will also

want to test using the devices the interviewers will be using. Interviewers,

fieldwork managers and account managers must also test.

For web interviewing, where respondents are filling in the questionnaire

themselves, via their PC/laptop, or tablet/phone? You will want to pretend to be a

respondent and fill in a questionnaire to see if all is clear and appears on screen

as it should. You will want to test using different browsers and devices. Fieldwork

managers and account executives must also test.

Finally, if you are using any quotas, you will want to check if your quotas are

working properly: are people being added to the right cells? And are these cells

updating as people complete interviews? This is something you will have to check

with your fieldwork department.

Usually the client also tests themselves and then gives the final sign-off.

Once everybody has tested and we are sure that all is functioning as it should, we

begin fieldwork.

23. Fieldwork

When fieldwork begins, we start our actual data collection; our harvesting of

information. Fieldwork is the most expensive part of market research. A sample

consisting of potential respondents often costs money and engaging respondents,

either online, via telephone or personally is a costly endeavor as well.

The last thing you do before you deliver your script to the fieldwork department is

fix your positions. If this is a new survey, not some follow-up wave to an

old/existing survey, but a new survey, you must fix your data positions before

fieldwork begins.

This is imperative.

The data we will be collecting during fieldwork will be stored in exactly those

positions.

Once fieldwork begins, you must never ever change those positions.

Making Changes During Fieldwork

The life of a scripter is by no means perfect.

 57

Changes do occur during fieldwork. Clients and researchers will often take a look

at the initial results and then add or remove things to an existing questionnaire. If

this occurs, you should

1. Mark the occasion. You can do this by adding a dummy question and

fixing a number in it, like ‘1’. This is useful for data processing later. Every

record which has that fixed ‘1’ in the data, is from after the changes.

2. You should force any new questions that are added after your existing

data positions.

Like so.

We have a questionnaire with 20 questions.

*QUESTION 1 *CODES 61L1

What is your gender?

1: Male

2: Female

*QUESTION 2 *CODES 71L99 *MULTI *RANDOM

Which car do you drive?

1: Alpha Romeo

2: BMW

3: Citroen

**etc

99: None of these *NMUL

** Questionnaire

*QUESTION 20 *ALPHA 1121L6

Please enter your zipcode

*END

If we decide to add a car brand during fieldwork? Then we do not have a problem.

We simply add a code. This does not affect the positions since we allocated enough

space, namely 99 codes, length 99.

If we decide to remove Q2 and add a Q11 however, this will affect the

positions. We are removing a question and adding an entirely new one.

*QUESTION 1 *CODES 61L1

What is your gender?

1: Male

2: Female

*QUESTION 2 *CODES 71L99 *MULTI *RANDOM *DUMMY

Which car do you drive?

1: Alpha Romeo

2: BMW

3: Citroen

**etc

99: None of these *NMUL

** Questionnaire

*Q101 *CODES 1201L1 *DUMMY

From here changed fieldwork, added Q11 on February 2018

1: Fix feb 2018 change fieldwork, adding Q11

 58

** Fixing ‘1’ for changed fieldwork

*COPY Q101 [1]

*QUESTION 11 *CODES 1211L2

Do you own a dog?

1: Yes

2: No

** Questionnaire

*QUESTION 20 *ALPHA 1121L6

Please enter your zip code

*END

As you can see. We don’t physically remove Q2. We simply turn it into a *DUMMY so

it doesn’t get asked and we keep the positions Q2, 71L99, still intact.

We then add Q11. As we can see our highest position is 1121L6, from Q20. We

therefore allocate plenty of room and place Q101 on 1201L1, adding it to the data

file, making sure it doesn’t overwrite anything. We mark the change by adding a ‘1’

to our data file and we then add Q11 on 1211L1.

It is imperative that you keep track of which positions are used and which are not

when adding questions and codes or removing questions and codes. You must

make sure the positions stay fixed and that your data map stays the same.

Otherwise data processing will be impossible.

Please note: Once changes have been made to a questionnaire that is already in

field it is important that you run through your entire testing process again.

Changes may seem simple or even trivial, but they can unintended effects. Once a

change has been made, all must be tested again to avoid any errors or problems

during fieldwork.

24. Data Formats

The NIPO ODIN Developer allows you to export your data to a variety of statistical

software packages. The following formats are supported:

 NIPO Diana / Nvision Script

 Triple-S XML

 SPSS Portable

 SPSS-PC (script format)

 Ascribe

 Quantime

 Image / Sound

Please note: NIPO maintains a DCS which allows you to convert your data so you

can directly process it in SPSS/Dimensions. Ask our helpdesk for more

information.

NIPO Diana

 59

The export to NIPO Diana may be used to create files that may be used by both

NIPO Diana and Nvision Script.

Export to NIPO Diana variables

Choose the following options:

Language

If more than one language is defined within the questionnaire, select the language

to use for the question and code labels in the export.

Add filters to variables

Any questionnaire filters are also defined in the variables.

Variable name in front of question text

The question label is preceded by the export name of the variable. Optionally add

a line feed to the variable name.

Use CODE ‘n‘ if no code text specified

For code category labels without text, a label is created containing the word 'CODE'

followed by the code number.

‘Question n’ in front of question text

All question texts are preceded by the word "Question" followed by the question

number originally used in the questionnaire. Optionally add a line feed to the

variable name.

Write random and order numbers

Where *RANDOM and *ORDER are used with a position definition, this stores the

order in which the codes appeared during the questionnaire in an additional

variable.

Insert [LF] in question text

If line feeds are used in the question labels, these are transferred in the export.

Duplicate line feeds are removed. By default, line feeds are translated into spaces.

Insert [LF] in code text

 60

If line feeds are used in the code labels, these are transferred in the export.

Duplicate line feeds are removed. By default, line feeds are translated into spaces.

Include questions without text and unused questions

Exports questions without text and questions that are never shown due to routing.

By default, these are not exported.

Generate codes for scale questions

Generates code numbers for *SCALE questions. By default, these are exported as

numerical variables.

Include null-evaluating filter and dummy questions

Exports questions that use a filter that always evaluates to false (for example *IF

[1 = 0]) and *DUMMY questions. By default, these are not exported.

No duplicate text for *OPEN and *NUMBER questions

For *OPEN and *NUMBER questions, creates a label with the question text,

removing the label for the question text.

No comment lines in var file

Removes comment lines (COM) from the variable file. Comment lines are used as

export directives for the NIPO DSC for IBM SPSS, but NIPO Diana cannot correctly

handle certain comment directives. Check this option if the export must be used

by NIPO Diana. Do not check this option if the export must be used by the NIPO

DSC for IBM SPSS.

Maximum codes per variable

Enforces a maximum number of codes per variable. Codes beyond this limit are

not exported. This may be required for NIPO Diana, which has a limit of 200

variables.

Set line length

Sets the maximum amount of characters to be used for question labels and code

labels on a single row. Rows are split using the backslash character. Sentences are

split at complete words.

Open VAR file after export

Automatically opens the exported variable file in the NIPO ODIN Developer.

Unicode VAR file

Exports a Unicode variable file instead of an ASCII file (supported by Nvision Script

only).

Code Label Exports in a *FORM Question

In a *FORM question, all text of a code label (both before and after the data field)

is used for the export to NIPO Diana variables.

Exporting text of *FORM question

*QUESTION 1 *FORM

How much did you pay for:

1: Product A *NUMBER 61L3.2 Euros

2: Product B *NUMBER 66L3.2 Euros

 61

Is exported as:

*V1_1 61L3.2: How much did you pay for: Product A Euros

*V1_2 66L3.2: How much did you pay for: Product B Euros

Random Code Number Export in NIPO Diana

Exporting random order

*QUESTION 2 *CODES 81L9 *RANDOM 90L3 *CONTROL Q1 N

Which of the following brands of beers do you know?

(Int: read out)

1: Heineken

2: Amstel

3: Grolsch

8: Other *OPEN *NOCON

9: None *NMUL *NOCON

Is exported as:

*V2 *MV 81L9:V2[LF]Question 2[LF]Which of the following brands

of brands of beers do you know? (Int: read out)

1: Heineken

2: Amstel

3: Grolsch

8: Other

9: None

*V2_R1 *SNG 90L1:V2_R1[LF]Question 2 - Random nr. 1[LF]Which

of the following brands of brands of beers do you know? (Int:

read out)

1: Heineken

2: Amstel

3: Grolsch

8: Other

9: None

*V2_R2 *SNG 91L1:V2_R2[LF]Question 2 - Random nr. 2[LF]Which

of the following brands of brands of beers do you know? (Int:

read out)

1: Heineken

2: Amstel

3: Grolsch

8: Other

9: None

*V2_R3 *SNG 92L1:V2_R3[LF]Question 2 - Random nr. 3[LF]Which

of the following brands of brands of beers do you know? (Int:

read out)

1: Heineken

2: Amstel

3: Grolsch

8: Other

9: None

 62

Order Code Number Export in NIPO Diana

Exporting order of mentions

*QUESTION 1 *CODES 61L9 *MULTI 70L3

Which brands of beers do you know?

(Int: type the codes in the same order as mentioned by

respondent)

1: Heineken

2: Amstel

3: Grolsch

8: Other *OPEN

9: None *NMUL

Is exported as:

*V1 *MV 61L9:V1[LF]Question 1[LF]Which brands of beers do you

know? (Int: type the codes in the same order as mentioned by

respondent)

1: Heineken

2: Amstel

3: Grolsch

8: Other

9: None

*V1_O1 *SNG 70L1:V1_O1[LF]Question 1 - Order nr. 1[LF]Which

brands of beers do you know? (Int: type the codes in the same

order as mentioned by respondent)

1: Heineken

2: Amstel

3: Grolsch

8: Other

9: None

*V1_O2 *SNG 71L1:V1_O2[LF]Question 1 - Order nr. 2[LF]Which

brands of beers do you know? (Int: type the codes in the same

order as mentioned by respondent)

1: Heineken

2: Amstel

3: Grolsch

8: Other

9: None

*V1_O3 *SNG 72L1:V1_O3[LF]Question 1 - Order nr. 3[LF]Which

brands of beers do you know? (Int: type the codes in the same

order as mentioned by respondent

1: Heineken

2: Amstel

3: Grolsch

8: Other

9: None

Exports of *FORM Questions with Codes

Exports of *FORM questions using codes for fields appropriately numbers

variables according to the code numbers. The label is created from all successive

text for that code. Note that in a *SCALE or *GRID question the appropriate

column headers are exported if tabs have been used correctly to separate these.

Example script 1

 63

*QUESTION 1 *FORM

What is your address?

1: Street *ALPHA 61L35

2: House number *NUMBER 96L5

3: Postal code *ALPHA 101L10

4: City *ALPHA 111L30

Result export to NIPO Diana script 1

*V1_1 *TEK 61L35: What is your address? Street

*V1_2 *SNG 96L5: What is your address? House number

*V1_3 *TEK 101L10: What is your address? Postal code

*V1_4 *TEK 111L30: What is your address? City

Example script 2

*QUESTION 2 *FORM

What did you think of the service at the following gas

stations?

 Esso Mobil Oil Shell Texaco

1:Very good *GRID 141L5 6.1 4.10

Good

Average

Poor

Very poor

No opinion

In the script above, tabs are used to space column headers. Note that there is also

a tab between the label and the *GRID on the first line, and that both the column

header and the first line are ended with a space and tab.

Result export to NIPO Diana script 2

*V2_1 141L1: What did you think of the service at the

following gas stations? Esso

1:Very good

2:Good

3:Average

4:Poor

5:Very poor

6:No opinion

*V2_2 142L1: What did you think of the service at the

following gas stations? Mobil Oil

1:Very good

2:Good

3:Average

4:Poor

5:Very poor

6:No opinion

*V2_3 143L1: What did you think of the service at the

following gas stations? Shell

1:Very good

2:Good

3:Average

4:Poor

5:Very poor

 64

6:No opinion

*V2_4 144L1: What did you think of the service at the

following gas stations? Texaco

1:Very good

2:Good

3:Average

4:Poor

5:Very poor

6:No opinion

Triple-S XML

Triple-S XML is a open standard data format using XML. It is supported by a variety

of products, including but not limited to:

 Confirmit/Bellview

 CfMC Survent

 Merlin

 Miriad (TNS)

 SNAP

An export to Triple-S requires that the survey data file is present in same the

directory as the questionnaire that is exported. For a questionnaire NAMEQ, the

data file should be named NAME.DAT.

Export to Triple-S XML

Export to Triple-S version

Sets the Triple-S format to use. Check your statistical analysis package for details.

Supported exports are 1.1, 1.2 and 2.0.

Data file format

Sets the data file format for the export, either fixed or csv (character-delimited).

This is only supported for Triple-S version 2.0.

 65

Convert text using code page

Select the code page to convert the export into. Make sure the selected code page

matches the language of your questionnaire.

Subsurvey

Select which survey to export if *NEW was used within the questionnaire.

Language

If more than one language is defined within the questionnaire, select the language

to use for the question and code labels in the export.

Include alphanumeric questions

Include *ALPHA and *NUMBER questions in the export.

Include questions without text and unused questions

Exports questions without text and questions that are never shown due to routing.

By default, these are not exported.

Include null-evaluating filter and dummy questions

Exports questions that use a filter that always evaluates to false (for example *IF

[1 = 0]) and *DUMMY questions. By default, these are not exported.

Recode questions containing code '0'

Code 0 for code categories is by default not supported in the Triple-S XML format.

This option recodes code labels if code 0 was used in the questionnaire.

Include open answers

In addition to optionally coded open-ended questions, this exports open-ended

answer verbatim into the data file.

Open answer length

Sets the maximum number of characters to be used for open-ended answers.

Answers beyond the length limit are truncated.

Check QPS compliance

Checks compliance with Triple-S exports for QPS. If the compliance is not met, a

warning message is displayed.

Open SSS file

Automatically opens the Triple-S variable definition file in the NIPO ODIN

Developer after export.

The following characters in the question and code text are escaped when

exporting to Triple S XML:

 < is replaced by <

 66

 is replaced by >

 & is replaced by &

 ' is replaced by '

 " is replaced by "

SPSS Portable

An export to SPSS Portable requires that the survey data file is present in same

the directory as the questionnaire that is exported. For a questionnaire NAMEQ,

the data file should be named NAME.DAT.

Export to SPSS POR file

Subsurvey

Select which survey to export if *NEW was used within the questionnaire.

Language

If more than one language is defined within the questionnaire, select the language

to use for the question and code labels in the export.

Convert text using code page

Select the code page to convert the export into. Make sure the selected code page

matches the language of your questionnaire.

Retain ODIN data format

Not available for this format.

Include open answers

Not available for this format.

Max record length

The maximum number of positions of a single record. Check your statistical

analysis software for the limits. Longer records are split at the configured

threshold.

Include questions without text and unused questions

Exports questions without text and questions that are never shown due to routing.

By default, these are not exported.

 67

Include null-evaluating filter and dummy questions

Exports questions that use a filter that always evaluates to false (for example *IF

[1 = 0]) and *DUMMY questions. By default, these are not exported.

Include save script

Not available for this format.

Variable name in front of question text

The question label is preceded by the export name of the variable. Optionally add

a line feed to the variable name.

‘Question n’ in front of question text

All question texts are preceded by the word "Question" followed by the question

number originally used in the questionnaire.

Use question-ID's as variable names

If specified, use names defined with *VAR as variable names.

Use alternative names for random and order variables

Uses a slightly shorter format for *RANDOM and *ORDER variables, where the

default first letter is replaced by R or O respectively.

Write random and order numbers

Where *RANDOM and *ORDER are used with a position definition, this stores the

order in which the codes appeared during the questionnaire in an additional

variable.

Use code numbers for Multiple Dichotomy fields

By default, for *MULTI questions all codes are exported as multiple dichotomy

questions (mentioned / not mentioned). This option places the original code

number in the question label for these questions.

Text for mentioned

For multiple dichotomy questions, sets the label to be used for 'mentioned'.

Text for not mentioned

For multiple dichotomy questions, sets the label to be used for 'no mentioned'.

Variable name length

Sets the maximum length for variable names. Choose either 8 or 64, dependent on

your SPSS version in use.

Variable label length

Sets the maximum length for the variable label (the question text). Longer texts

are truncated at the threshold.

 68

Value label length

Sets the maximum length for the value label (the code label text). Longer texts are

truncated at the threshold.

Variable names first letter

Sets the first letter for an exported variable name. This only happens question IDs

are not used, or if the question does not have a question ID defined (*VAR).

Number of chars from multi question

By default, multiple dichotomy questions receive the full original question text in

addition to the code label. This option configures the maximum number of

characters from the question label to include.

Note: The selected settings for variable names may cause the export to generate

variable names that exceed the maximum number of characters for the SPSS

version you are using. A warning is issued for the minimum limit for older versions

- adjust the settings if required.

SPSS-PC

An export to SPSS-PC script files requires that the survey data file is present in

same the directory as the questionnaire that is exported. For a questionnaire

NAMEQ, the data file should be named NAME.DAT. This export creates two files: a

variable definition file (SPS file) and a data file (EXT file). Run the SPS file in SPSS

to create the data set.

Export to SPSS-PC (script files)

Subsurvey

Select which survey to export if *NEW was used within the questionnaire.

Language

If more than one language is defined within the questionnaire, select the language

to use for the question and code labels in the export.

Convert text using code page

Select the code page to convert the export into. Make sure the selected code page

matches the language of your questionnaire.

 69

Retain ODIN data format

Keeps the exported data file (EXT file) in the same format as the original NIPO

ODIN data file (DAT file). Included open-ended answers, if any, are appended at

the end of each record.

Include open answers

Includes open-ended answer verbatim in the data file as additional variables.

Max record length

The maximum number of positions of a single record. Check your statistical

analysis software for the limits. Longer records are split at the configured

threshold.

Include questions without text and unused questions

Exports questions without text and questions that are never shown due to routing.

By default, these are not exported.

Include null-evaluating filter and dummy questions

Exports questions that use a filter that always evaluates to false (for example *IF

[1 = 0]) and *DUMMY questions. By default, these are not exported.

Include save script

Includes the line "SAVE OUTFILE='survey.SAV' /COMPRESSED" where survey is the

name of the survey.

Variable name in front of question text

The question label is preceded by the export name of the variable. Optionally add

a line feed to the variable name.

‘Question n’ in front of question text

All question texts are preceded by the word "Question" followed by the question

number originally used in the questionnaire.

Use question-ID's as variable names

If specified, use names defined with *VAR as variable names.

Use alternative names for random and order variables

Uses a slightly shorter format for *RANDOM and *ORDER variables, where the

default first letter is replaced by R or O respectively.

Write random and order numbers

Where *RANDOM and *ORDER are used with a position definition, this stores the

order in which the codes appeared during the questionnaire in an additional

variable.

 70

Use code numbers for Multiple Dichotomy fields

By default, for *MULTI questions all codes are exported as multiple dichotomy

questions (mentioned / not mentioned). This option places the original code

number in the question label for these questions. If disabled, the dichotomy

questions are renumbered and do not carry any relation to code numbers used in

the questionnaire.

Text for mentioned

For multiple dichotomy questions, sets the label to be used for 'mentioned'.

Text for not mentioned

For multiple dichotomy questions, sets the label to be used for 'no mentioned'.

Variable name length

Sets the maximum length for variable names. Choose either 8 or 64, dependent on

your SPSS version in use.

Variable label length

Sets the maximum length for the variable label (the question text). Longer texts

are truncated at the threshold.

Value label length

Sets the maximum length for the value label (the code label text). Longer texts are

truncated at the threshold.

Variable names first letter

Sets the first letter for an exported variable name. This only happens question IDs

are not used, or if the question does not have a question ID defined (*VAR).

Number of chars from multi question

By default, multiple dichotomy questions receive the full original question text in

addition to the code label. This option configures the maximum number of

characters from the question label to include.

Note: The selected settings for variable names may cause the export to generate

variable names that exceed the maximum number of characters for the SPSS

version you are using. A warning is issued for the minimum limit for older versions

- adjust the settings if required.

Ascribe

Open-ended answers in NIPO Fieldwork System surveys may be coded using

Language Logic's on-line coding solution Ascribe. Ascribe imports coding projects

using a proprietary (ZIP compressed) XML format.

 71

An export to Ascribe requires that the survey data file is present in same the

directory as the questionnaire that is exported. For a questionnaire NAMEQ, the

data file should be named NAME.DAT.

Ascribe Export

Language

If more than one language is defined within the questionnaire, select the language

to use for the question and code labels in the export.

Codeframe file

If the project was previously coded, the current questionnaire may not contain the

required Code Frames. Select the Ascribe Code Frame file to use for coding.

Incremental

Check this option if you plan to add the current export to an existing Ascribe

project. Use this feature to add new data to an existing project.

The result file is called [surveyname]_setup.zip where surveyname is the name of

your survey. See the Ascribe documentation for details on how to create a project

from this file or how to add incremental data to an existing project.

Quantime

An export to Quantime requires that the survey data file is present in same the

directory as the questionnaire that is exported. For a questionnaire NAMEQ, the

data file should be named NAME.DAT.

Export to Quantime

 72

Include questions without text and unused questions

Exports questions without text and questions that are never shown due to routing.

By default, these are not exported.

Include null-evaluating filter and dummy questions

Exports questions that use a filter that always evaluates to false (for example *IF

[1 = 0]) and *DUMMY questions. By default, these are not exported.

Subsurvey

Select which survey to export if *NEW was used within the questionnaire.

Language

If more than one language is defined within the questionnaire, select the language

to use for the question and code labels in the export.

Convert text using code page

Select the code page to convert the export into. Make sure the selected code page

matches the language of your questionnaire.

Variable label length

Sets the maximum length for the variable label (the question text). Longer texts

are truncated at the threshold.

Value label length

Sets the maximum length for the value label (the code label text). Longer texts are

truncated at the threshold.

Side

Defines the default left column width for the question text and code labels.

Variable name in front of question text

The question label is preceded by the export name of the variable. Optionally add

a line feed to the variable name.

‘Question n’ in front of question text

All question texts are preceded by the word "Question" followed by the question

number originally used in the questionnaire.

Use variable names

Instead of automatically assigning question variable names based on question

numbers, use the labels defined by *VAR.

Include questions without text and unused questions

Exports questions without text and questions that are never shown due to routing.

By default, these are not exported.

 73

Include null-evaluating filter and dummy questions

Exports questions that use a filter that always evaluates to false (for example *IF

[1 = 0]) and *DUMMY questions. By default, these are not exported.

 74

Appendix 1 Terms of Use and
Acceptable Use policy

Since this document is subject to (legal change), please use this link and carefully

study this document. https://www.nipo.com/nfield-terms-of-use.

This document also has a link to the Acceptable Use Policy (AUP)

Resources

www.nipo.com

On our Customer Support Site, under Documentation, ODIN Developer, you can

find more information, a full reference guide, the manuals and the template

documentation. Just ask our helpdesk for a login.

Customer Support Site - Documentation

Congratulations!

You have successfully completed your ODIN Scripter training. We will check your

final Assignment through the invites that you’ve sent us. Once that’s done, we will

send you an email and your certificate.

We hoped you enjoyed your training.

Welcome to the wonderful world of scripting.

https://www.nipo.com/nfield-terms-of-use
http://www.nipo.com/
https://support.nipo.com/Customer-Portal/Documentation/

 75

Copyright © 2019 NIPO

All rights reserved.

This document contains proprietary information of NIPO. This product is protected

by copyright law. Reverse engineering of the software is prohibited.

Due to continued product development this information may change without

notice. The information and intellectual property contained herein is confidential

between NIPO and the customer and remains the exclusive property of NIPO.

If you find any problems in the documentation, please report them to us in email.

NIPO does not warrant that this document is error-free. In cases where the

documentation significantly differs from the software implementation, the end

user is encouraged to contact NIPO. However, the information in this document

can not be used to grant the end user of the product any rights with regard to

updates or fixes, demanding a match with the existing documentation.

No part of this publication may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, electronic, mechanical, photocopying,

recording or otherwise without the prior written permission of NIPO. You are not

allowed to share the software with individuals outside your company.

 76

NIPO

Amsteldijk 166

1079 LH Amsterdam

The Netherlands

hello@nipo.com

www.nipo.com

