

NFIELD REFERENCE

24 September 2025

Copyright © 2025 NIPO

All rights reserved.

This document contains proprietary information of NIPO. This product is protected by copyright law.

Reverse engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information

and intellectual property contained herein is confidential between NIPO and the customer and

remains the exclusive property of NIPO.

If you find any problems in the documentation, please report them to us in email. NIPO does not

warrant that this document is error-free. In cases where the documentation significantly differs from

the software implementation, the end user is encouraged to contact NIPO. However, the information

in this document can not be used to grant the end user of the product any rights with regard to

updates or fixes, demanding a match with the existing documentation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any

form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior

written permission of NIPO. You are not allowed to share the software with individuals outside your

company.

Introduction

Page I

Table of Contents

1. Introduction ...9

1.1 Terminology ... 9

1.1.1 General ... 9

1.1.2 Questions and Answers .. 9

1.1.3 Files and Tables... 10

2. Using the NIPO ODIN Developer ... 11

2.1 The Script Editor Window .. 11

2.1.1 Line Size .. 11

2.1.2 Pop-up Menu Options .. 11

2.1.2.1 Inserting Question Definitions.. 11

2.1.2.2 Changing Question Options .. 12

2.2 Syntax Checking .. 13

2.2.1 Warning Message for *CODES Question Without Code Categories ... 15

2.2.2 Warning Message for Unfixed Questions .. 15

2.2.3 Error on *FORM Question Language Section Mismatch .. 15

2.2.4 Undeclared Variables are Created when Fixing a Questionnaire ... 15

2.2.5 Results Window Keeps Previous Syntax Checks .. 16

2.3 Test Run Questionnaire ... 16

2.3.1 Question Highlight in NIPO CATI Preview .. 16

2.3.2 Check Routing for Stratification ... 17

2.3.3 Show Variables .. 17

2.4 Menu Options .. 17

2.4.1 Open Data Files ... 17

2.4.2 Remove Commands .. 17

2.4.3 Comment / Uncomment .. 17

2.4.4 Create Questionnaires in Unicode ... 18

2.4.5 Find Function with Regular Expressions and Mark All .. 18

2.4.6 Start Editor in Workbook Mode .. 18

2.4.7 Create Code Numbers Before Code Labels and Fields ... 18

2.5 The NIPO ODIN Developer ...20

2.5.1 NIPO Diana/DSC Export.. 21

2.5.1.1 Code Label Exports in a *FORM Question ... 23

2.5.1.2 Exports of *FORM Questions with Codes... 23

2.5.2 Triple-S XML ... 24

2.5.3 SPSS Portable .. 26

2.5.4 SPSS-PC... 28

2.5.5 Ascribe .. 31

Introduction

Page II

2.5.6 Quantime .. 32

2.6 Imports ... 33

2.6.1 Ascribe .. 34

2.7 NIPO ODIN Developer Configuration ... 34

2.7.1 Syntax Highlighting ... 35

2.7.2 Application Configuration Options .. 35

2.7.2.1 ODIN Options ... 35

2.7.2.2 Interview System Options .. 36

2.7.2.3 CATI .. 37

2.7.2.4 How to setup the Nfield interview system.. 37

2.7.2.5 Coding System Options ..38

2.7.2.6 Check Options ..38

2.7.2.7 Dummy Data Options ...38

2.7.2.8 Print Options.. 39

2.7.2.9 Autosave Options ... 40

2.7.2.10 Files Options ... 40

3. Using the NIPO ODIN Script Language ... 43

3.1 Naming Conventions .. 43

3.1.1 Questions ... 43

3.1.2 Data Fields..44

3.2 Variables ...44

3.3 System Variables ... 45

3.3.1 Test Mode Aware Scripting .. 45

3.3.2 Repeat Number ... 45

3.3.3 Timer ...46

3.3.4 Elapsed Time Function ... 47

3.3.5 Language ... 48

3.4 Expressions ... 48

3.4.1 Expression Operators ...49

3.4.2 Examples of Expressions ... 51

3.4.3 Common Mistakes in Expressions .. 52

3.5 String manipulation routines .. 53

3.5.1 STRFINDMATCH .. 54

3.5.2 STRHASMATCH ... 55

3.5.3 STRINDEX .. 55

3.5.4 STRLENGTH ... 56

3.5.5 STRLOWER .. 56

3.5.6 STRREPLACE ... 57

3.5.7 STRSUBSTR ...58

3.5.8 STRTRIM ..58

3.5.9 STRUPPER ... 59

Introduction

Page III

3.6 Form Field References.. 59

3.7 Custom Properties .. 61

3.7.1 Overview ... 61

3.7.2 Custom Properties in Nfield .. 61

3.7.3 property() Function ... 61

3.7.4 In *USELIST command .. 63

3.8 Date Functions ... 65

3.8.1 Overview ... 65

3.8.2 Adding Seconds to a Date.. 65

3.8.3 Calculating the Time Difference Between Two Dates ... 65

3.8.4 Obtaining the Day Number of the Week ...66

3.8.5 Obtaining the Week Number ...66

4. Quota .. 67

4.1 NIPO Academy Sessions on Quota ... 67

4.2 What is Quota? .. 67

4.2.1 Steps to Create Quota Frame ... 68

4.2.2 How to Define Quota Variables and Levels ... 68

4.2.3 How to Organize and Order the Quota Variables .. 71

4.2.4 How to Add Quota Targets... 73

4.2.5 Max Overshoot Option ... 74

4.2.6 Changing Quota Frames ... 75

4.2.7 Uploading and Downloading Quota Frames... 77

4.2.8 Quota in ODIN Script .. 77

4.2.9 Quota Out in Paradata ... 77

4.3 Minimum and Maximum Targets .. 77

4.3.1 Only a Total Target Entered .. 78

4.3.2 Total Target and Max Targets for Levels are Entered ... 78

4.3.3 If the Total Target is Not the Same as the Sum of Maxes .. 78

4.3.4 Total Target and Minimum Level Targets are Entered.. 79

4.3.5 Total Target Smaller than the Sum of Level Minimums .. 80

4.3.6 Total Target Greater than the Sum of Level Minimums... 80

4.3.7 Combining Maximum and Minimum Level Targets ... 81

4.3.8 Overshoot ... 82

4.4 Least-filled Quota ...83

4.5 Multi Quotas.. 90

4.5.1 Linking Multi Quota with Other Quotas ... 93

4.6 Quota frame validation ..94

4.7 Counting Quota Level More than Once per Interview ... 95

5. Suspend and Resume Interview ... 97

5.1 Ways to Suspend an Interview .. 97

5.2 Resume Interview .. 98

Introduction

Page IV

6. Command Index ... 99

6.1 *? ..99

6.2 *ALPHA .. 104

6.3 *BACK .. 106

6.4 *BLOCK .. 108

6.5 *BUT .. 111

6.6 *CODES .. 114

6.7 *CONTROL ... 116

6.8 *COPY .. 118

6.9 *COUNT ... 120

6.10 *DATE ... 122

6.11 *DUMMY .. 125

6.12 *END .. 126

6.13 *ENDNGB ... 128

6.14 *ENDPAGE ... 129

6.15 *ENDST .. 131

6.16 *EXCLUDE .. 132

6.17 *FIELD .. 134

6.18 *FONT (definition) ... 136

6.19 *FONT (switching) .. 138

6.20 *FORM.. 141

6.21 *GETLFQLIST ... 145

6.22 *GOSUB ... 151

6.23 *GOTO .. 153

6.24 *GROUP ... 155

6.25 *HEADING .. 157

6.26 *ID .. 160

6.27 *IF (condition), *ELSEIF, *ELSE, *ENDIF .. 162

6.28 *IF (question option) .. 163

6.29 *INCLUDE .. 165

6.31 *INIT ... 167

6.32 *LABEL ... 168

6.33 *LANGUAGE ... 169

6.34 *LIST (definition) and *ENDLIST .. 176

6.35 *LIST (question option) .. 179

6.36 *MATRIX ... 182

6.37 *MAX .. 188

6.38 *MERGE.. 190

6.39 *MIN ... 193

6.40 *MULTI ... 195

6.41 *NMUL ... 197

Introduction

Page V

6.42 *NOCON ... 198

6.43 *NON... 200

6.44 *NUMBER .. 201

6.45 *OPEN (question type) ... 203

6.46 *OPEN (codes option) ...205

6.47 *ORDER... 206

6.48 *PAGE...209

6.49 *PICT (question option) .. 210

6.50 *PICT (codes option) ... 212

6.51 *PROPERTIES .. 214

6.52 *PUT ... 217

6.53 *QUESTION ... 220

6.55 *QUOTA ... 222

6.56 *RANDOM .. 224

6.57 *RANGE .. 226

6.58 *REC ... 228

6.59 *REPEAT ... *ENDREP .. 230

6.60 *REQUEST.. 233

6.61 *RETURN ... 243

6.62 *ROT...244

6.63 *SAMPLEDATA ...246

6.64 *SAVE (question option) ... 247

6.65 *SAVE (codes option) .. 249

6.66 *SHOWDOCUMENT ...250

6.67 *SORT and *STOPSORT ... 252

6.68 *SPLITSTRING ... 255

6.69 *STOPRANDOM ... 258

6.70 *STRAT ... 259

6.71 *SUBROUTINE ... *ENDSUB... 260

6.72 *SWILANG .. 262

6.73 *TABLE ...264

6.74 *TEMPLATE ..266

6.75 *TEXTVARS ..268

6.76 *UIOPTIONS (command) ... 270

6.77 *UIOPTIONS (question option) .. 272

6.78 *UIRENDER (command) .. 274

6.79 *UIRENDER (question option) ... 276

6.80 *USEBUTTONS .. 277

6.81 *USELIST ... 282

6.82 *VAR ...284

6.83 *VARS ...286

Introduction

Page VI

7. File Structures and Database Tables ... 289

7.1 Data Files ..289

7.1.1 Closed Answers File (DAT-file) ..289

7.1.2 Open answers file (O-file) ..289

7.2 Paradata ... 291

7.2.1 Introduction to Paradata ... 291

7.2.1.1 What is Paradata ... 291

7.2.1.2 What is Paradata Used For .. 291

7.2.1.3 How to Create and Download Paradata .. 291

7.2.1.4 How to Set Paradata to Auto Sync after Each Interview .. 293

7.2.2 Paradata in CAPI Surveys ... 293

7.2.2.1 CAPI survey without Sampling Points .. 294

7.2.2.2 CAPI survey with Sampling Points and Quota .. 299

7.2.2.3 CAPI survey with Sampling Points and Addresses... 301

7.2.2.4 CAPI survey with Sampling Points, Quota and Addresses... 304

7.2.3 Paradata in Online Surveys ...305

7.2.4 Paradata for the Quota Out (both Online and CAPI Surveys) ... 306

7.3 Audit Trail ... 307

7.3.1 Introduction to Audit Trail... 307

7.3.2 Overview of an Audit Trail file ... 308

7.3.3 Suspending an Interview ... 310

7.3.4 Killing the Nfield CAPI app During Interview .. 312

7.4 Sample Table ... 312

7.4.1 Introduction to Sample Table ... 312

7.4.2 Rules for Sample Table Headers .. 315

7.4.3 Dealing with Customer Personally Identifiable Information (PII) data 316

7.4.4 Blacklist .. 317

7.4.5 Locations of Nfield Services .. 317

7.4.6 Local Data Storage Possibilities ... 318

8. Interview Simulator ... 320

8.1 Running an interview simulation ... 320

8.2 Hints .. 322

8.2.1 What are hints for interview simulation? ... 322

8.2.2 When to use Hints? ... 322

8.2.3 Example .. 322

8.2.4 Properties ... 324

For more information .. 325

For more information on this feature, please watch our NIPO Academy session 46............................... 325

8.2.5 Excluding specific response codes .. 326

8.2.6 Total sum value for the question ... 327

9. Default Template for Nfield System Rendering Options .. 329

Introduction

Page VII

9.1 Capture Photo.. 329

9.2 Capture Audio .. 331

9.3 Play Media .. 333

10. Only Relevant for Online Surveys ..335

10.1 Exit Links... 335

10.1.1 Placing the Exit Links.. 335

10.1.2 Types of Exit Links .. 336

10.1.3 Generic Exit Links Example.. 336

10.1.4 Variables in Exit Links Examples .. 337

10.2 NIPO Status Page .. 339

11. Only Relevant for CAPI Surveys .. 341

11.1 Silent Recording .. 341

11.2 GPS Location Fix from Script ... 347

11.3 Adding custom fields to Sampling Points ...349

12. Appendix .. 351

12.1 Nfield Acceptable Use Policy .. 351

12.2 Maximum Number of Respondents To Upload .. 351

12.3 Maximum Length for Sample Fields... 351

12.4 Response Codes .. 351

12.5 TTStartLink ... 353

Page 9

1. Introduction

This is the command reference for the NIPO ODIN scripting language.

Please make sure to always use the latest ODIN Developer version. It can be downloaded from our

support website. Ask the NIPO support team to allow you to download the latest version of ODIN

(currently, the latest version is 5.18.021).

In this reference we are only showing the features of ODIN Developer relevant to Nfield, even though

ODIN Developer also supports commands for NFS.

Please also note that all examples in this reference are based on the default NIPO template (Nfield

Chicago). If you use a different template, the *UIOPTIONS and the *UIRENDER might be different for

your template than in the examples shown.

1.1 Terminology
This section provides a brief overview of the terminology used within this document.

1.1.1 General

Question type

Defines the type of answer which is expected for a question. Question types are for example closed,

open, numerical, etc.

Question option

Defines what special properties an answer must have or how answer categories will be displayed.

There are question options to allow multiple answers, set a maximum value to be entered, show

answer categories in random order, etc.

Answer option

Defines the behavior of the program when an answer category is chosen. There are answer options to

prevent that an answer is combined with other answer categories, to prompt for an open answer, etc.

1.1.2 Questions and Answers

Closed question

A question where the answer is expected to be a choice from a fixed number of answer categories.

Answer code category

One of the possible answers defined for a (semi-)closed question.

https://www.nipo.com/software-and-documentation

Introduction

Page 10

Open question

A question where the answer is expected to be entered literally as text.

Semi-closed question

A question where the answer is expected to be a choice from a fixed number of answer categories

and where certain answer categories have a box to enter an alternative answers as text.

Open-ended answer

The literal text of an answer entered for an open or semi-closed or open question.

Numerical question

A question where an answer is expected to be a numerical value.

Text question

A question where an answer is expected to be text of limited length.

Answer code

A numeric value which is stored in the DAT-file when an answer category is chosen.

Answer field

A (series of) positions in the DAT-file where answer codes, values or texts are stored.

1.1.3 Files and Tables

Q-file (questionnaire)

Unicode file containing the question text and all the NIPO ODIN commands for routing, et cetera.

Sample table

Table in the database containing the gross sample. Each record in the sample table contains

information (telephone number, address, name, company size, etc.) about one (future) respondent.

DAT-file

Unicode text file containing answer codes that refer to chosen answer categories of closed questions,

values entered for numerical questions and texts entered for text questions.

O-file

Unicode text file containing all open answers entered by keyboard.

Using the NIPO ODIN Developer

Page 11

2. Using the NIPO ODIN Developer

The NIPO ODIN Developer is the NIPO ODIN script author's tool. It can be used for the following

purposes:

• Create, edit and syntax-check questionnaires for Nfield.

• Run a preview of the questionnaire.

• Generate dummy (test) data to verify questionnaire integrity.

• Export survey data for statistical analysis in various packages.

This section briefly discusses a number of features of the NIPO ODIN Developer.

2.1 The Script Editor Window

2.1.1 Line Size

A line in the NIPO ODIN Developer may be up to 4000 characters long. Scrolling in a very long line

might be slow - use Edit > Goto position to easily place the cursor on a certain position. To open data

files, select File > Open data file... from the menu.

2.1.2 Pop-up Menu Options

For any open file in the script editor window, right-click anywhere to open the pop-up menu. This

section describes a number of those options.

2.1.2.1 Inserting Question Definitions

To simplify creating NIPO ODIN Questionnaire, right-click the editor window and select Insert to

choose from the available question options.

Using the NIPO ODIN Developer

Page 12

Inserting a question

2.1.2.2 Changing Question Options

Right-click on a question line to change the question options. Depending on the type of question,

one of the following dialog boxes appears.

Changing the general question options

Using the NIPO ODIN Developer

Page 13

Changing the question options for a *CODES question

The options you see depend on the question types.

2.2 Syntax Checking

You can syntax check your questionnaire by selecting ODIN > Check... from the menu. A dialog

appears in which warning options may be configured. Warnings are issues that may lead to unwanted

behavior and / or loss of data, but do not prevent the questionnaire from running.

Note: By clicking on individual error or warning messages, the line in the code to which that error or

warning pertains becomes highlighted and comes into focus.

Using the NIPO ODIN Developer

Page 14

NIPO ODIN Developer check options

You may select the following options:

• Don’t suppress warnings. All warnings are reported.

• Suppress all warnings. None of the warnings are reported.

• Suppress. You can select which warnings to suppress.

The following warnings may optionally be suppressed:

• Too many positions for question. Applies if more positions are defined than strictly required to

store the input data. The length definition of a *CODES question reserves more space than

required to store the answer codes. This may sometimes be the case for any question where

*MULTI was accidentally omitted.

• MAX positions for Diana. Applies if more than 200,000 positions are used.

• Multiple use of position. Applies if a particular position is accessed to store information from

more than one question. This may cause the data to be overwritten. This warning is ignored for

positions in a *DUMMY question.

• Jump to previous question. Applies if a *GOTO is used to jump back instead of forward in the

questionnaire, which may cause an infinite loop. It is recommended to use *BACK instead.

• Code question without codes. Code questions without codes are skipped, therefore a warning

can be issued if a code question misses codes. This warning is ignored for *CODES questions in

combination with *DUMMY.

• Missing quotes. Applies to quoted text where a closing quote is missing.

Maximum data positions

Sets the maximum amount of positions allowed for a single interview. This is useful to match NIPO

ODIN to the limit of your data processing system. Nfield limit is 200,000 positions.

Using the NIPO ODIN Developer

Page 15

Filter duplicate error messages

This limits the number of reports per error message. For example, duplicate use of a position in the

DAT-file may only need to be reported once.

Keep previous results

Results of a previous syntax check are not cleared for a new syntax check; instead, a new window is

opened so that results may be compared.

Keep results after closing file

Keeps the Results window open once the questionnaire file is closed in the editor.

2.2.1 Warning Message for *CODES Question Without Code Categories

If no code categories are defined for a *CODES question a warning is displayed upon a syntax check.

No warning is supplied if a question text is also missing.

2.2.2 Warning Message for Unfixed Questions

You can test-run a questionnaire within the NIPO ODIN Developer NIPO ODIN Developer with unfixed

questions, but can not run the questionnaire in Nfield with unfixed questions.

The NIPO ODIN Developer gives a warning message upon syntax check if any unfixed questions

(length definitions without position definition) have been defined in the NIPO ODIN Questionnaire.

Only one warning is ever generated for the first line where an unfixed question was found.

Select ODIN > Fix or click the Fix button to fix the questions.

2.2.3 Error on *FORM Question Language Section Mismatch

The syntax check reports an error message when a *FORM question in the language section does not

contain any fields (*NUMBER or *ALPHA). The syntax check also reports an error message when a field

(*NUMBER or *ALPHA) is specified in a question that is not defined as *FORM.

2.2.4 Undeclared Variables are Created when Fixing a Questionnaire

If a variable is not declared before it is being used, a warning message appears. When fixing the data

positions or renumbering a questionnaire, these variable name declarations are automatically added

to the questionnaire as *TEXTVARS variables. Make sure no mistakes are made in the variable name,

and verify if *TEXTVARS is an appropriate type.

Using the NIPO ODIN Developer

Page 16

2.2.5 Results Window Keeps Previous Syntax Checks

The Results window of a syntax check keeps previous syntax checks. Right-click the window and

select Remove tab to close the result window. Click on the cross on the upper-left corner or use the

View > Results from the menu to toggle showing the docking window.

2.3 Test Run Questionnaire
Save your questionnaire and select ODIN > Run from the menu and select to preview the

questionnaire in NIPO CATI (or just click on the Run icon , which automatically starts a preview in

CATI). You could also do a preview in Nfield. For that, please refer to our NIPO ODIN Scripter Basic

course.

2.3.1 Question Highlight in NIPO CATI Preview

For a NIPO CATI preview, the NIPO ODIN Developer highlights the question currently in focus in the

script window. This helps in reviewing the question in focus during a preview run.

Note:

Special characters in the file path (underscores, ampersands et cetera) are not supported.

Question highlight

The script cannot be edited during the preview. When exiting the preview run, the cursor remains at

the last highlighted question.

https://elearning.easygenerator.com/ecca8544-3764-4ba7-974e-4310e2c74dba

Using the NIPO ODIN Developer

Page 17

This feature requires that the NIPO CATI Client used for preview is version 5.11 or newer. If the

highlight does not work, verify that the correct NIPO CATI Client version is in use (see "Interview

System Options" on page 36). In addition, enable Adjustable screen size to see the script window.

Note:

This feature is only available for a NIPO CATI preview.

2.3.2 Check Routing for Stratification

When using the command *STRAT in a questionnaire, for each occurrence a message dialog

‘stratification filled? Yes/No’ pops up. Select the appropriate answer to test your routing. Note that

no telephone file or sample table is used.

2.3.3 Show Variables

For NIPO CATI preview, you can show the contents of the currently known variables by selecting View

> View variables... from the menu. Note that system variables that appear are also NFS system

variables, and not only the Nfield ones. Other variables have to be declared with *VARS, *TEXTVARS

or *SAMPLEDATA first.

2.4 Menu Options

2.4.1 Open Data Files

The regular script editor is capable of managing up to 4,000 horizontal positions. To open larger

(data) files, select File > Open Data File... from the menu. This opens files up to 99,999 horizontal

positions, and cancels syntax highlighting.

2.4.2 Remove Commands

To be able to create a client-friendly questionnaire as well as to translate your questionnaire, select

ODIN > Remove Commands... from the menu. This option creates a translatable *LANGUAGE section

without NIPO ODIN commands, except for *QUESTION, *FONT and *?varname, that may be linked to

the original questionnaire using the *LANGUAGE command.

2.4.3 Comment / Uncomment

Select a block or a couple of lines and select Edit > Comment to make comments of these line. This

inserts a ** in front of all selected lines. Select Edit > Uncomment to remove the ** from the

selected lines.

Using the NIPO ODIN Developer

Page 18

2.4.4 Create Questionnaires in Unicode

This means full support for all non-western languages, like Hebrew, Arabic, Chinese, Japanese, et

cetera. Unicode is enforced by saving the file as type UTF-16. This is required for all extended

characters in questionnaires for Nfield.

2.4.5 Find Function with Regular Expressions and Mark All

Select Edit > Find to search for specific text in your questionnaire. Click Mark All to mark entries

found in the side bar.

Find function

2.4.6 Start Editor in Workbook Mode

Select View > Workbook to enable or disable showing windows in a workbook mode. The workbook

mode makes switching windows easier.

2.4.7 Create Code Numbers Before Code Labels and Fields

Select the lines you want to number, then select the ODIN > Insert numbers from the menu.

The NIPO ODIN Developer does not immediately verify code numbers against any duplicates or

against the question definition. To create unique numbers, do not update partial lists. Use the syntax

check to check on duplicate code numbers. Numbering is performed on all lines containing a carriage

return.

Using the NIPO ODIN Developer

Page 19

Creating code category numbers

Using the NIPO ODIN Developer

Page 20

Result

2.5 The NIPO ODIN Developer

The NIPO ODIN Developer allows you to export your data to a variety of statistical software packages.

The following formats are supported:

• NIPO Diana / Nvision Script

• Triple-S XML

• SPSS Portable

Using the NIPO ODIN Developer

Page 21

• SPSS-PC (script format)

• Ascribe

• Quantime

• Image / Sound

2.5.1 NIPO Diana/DSC Export

The export to NIPO Diana/DSC may be used to create files that may be used by both NIPO Diana and

Nvision Script, as well as input for the NIPO DSC. This export is also known as .Var export.

Export to NIPO Diana/DSC variables

Choose the following options:

Language

If more than one language is defined within the questionnaire, select the language to use for the

question and code labels in the export.

Add filters to variables

Any questionnaire filters are also defined in the variables.

Using the NIPO ODIN Developer

Page 22

Variable name in front of question text

The question label is preceded by the export name of the variable. Optionally add a line feed to the

variable name.

Use CODE ‘n‘ if no code text specified

For code category labels without text, a label is created containing the word 'CODE' followed by the

code number.

‘Question n’ in front of question text

All question texts are preceded by the word "Question" followed by the question number originally

used in the questionnaire. Optionally add a line feed to the variable name.

Write random and order numbers

This option is not relevant for Nfield.

Insert [LF] in question text

If line feeds are used in the question labels, these are transferred in the export. Duplicate line feeds

are removed. By default, line feeds are translated into spaces.

Insert [LF] in code text

If line feeds are used in the code labels, these are transferred in the export. Duplicate line feeds are

removed. By default, line feeds are translated into spaces.

Include questions without text and unused questions

Exports questions without text and questions that are never shown due to routing. By default, these

are not exported.

Include null-evaluating filter and dummy questions

Exports questions that use a filter that always evaluates to false (for example *IF [1 = 0]) and

*DUMMY questions. By default, these are not exported.

No duplicate text for *OPEN and *NUMBER questions

For *OPEN and *NUMBER questions, creates a label with the question text, removing the label for the

question text.

No comment lines in VAR file

Removes comment lines (COM) from the variable file. Comment lines are used as export directives for

the NIPO DSC for IBM SPSS, but NIPO Diana cannot correctly handle certain comment directives.

Check this option if the export must be used by NIPO Diana. Do not check this option if the export

must be used by the NIPO DSC for IBM SPSS.

Using the NIPO ODIN Developer

Page 23

Maximum codes per variable

Enforces a maximum number of codes per variable. Codes beyond this limit are not exported. This

may be required for NIPO Diana, which has a limit of 200 variables.

Set line length

Sets the maximum amount of characters to be used for question labels and code labels on a single

row. Rows are split using the backslash character. Sentences are split at complete words.

Open VAR file after export

Automatically opens the exported variable file in the NIPO ODIN Developer.

Unicode VAR file

Exports a Unicode variable file instead of an ASCII file (supported by Nvision Script and DSC).

2.5.1.1 Code Label Exports in a *FORM Question

In a *FORM question, all text of a code label (both before and after the data field) is used for the

export to NIPO Diana variables.

Exporting text of *FORM question

*QUESTION 1 *FORM

How much did you pay for:

 1: Product A *NUMBER 61L3.2 Euros

 2: Product B *NUMBER 66L3.2 Euros

Is exported as:

*V1_1 61L3.2: How much did you pay for: Product A Euros

*V1_2 66L3.2: How much did you pay for: Product B Euros

2.5.1.2 Exports of *FORM Questions with Codes

Exports of *FORM questions using codes for fields appropriately numbers variables according to the

code numbers. The label is created from all successive text for that code.

Example script

*QUESTION 1 *FORM

What is your address?

1: Street *ALPHA 61L35in

2: House number *NUMBER 96L5

3: Postal code *ALPHA 101L10

4: City *ALPHA 111L30

Result export to NIPO Diana script

*V1_1 *TEK 61L35: What is your address? Street

*V1_2 *SNG 96L5: What is your address? House number

*V1_3 *TEK 101L10: What is your address? Postal code

*V1_4 *TEK 111L30: What is your address? City

Using the NIPO ODIN Developer

Page 24

2.5.2 Triple-S XML

Triple-S XML is an open standard data format using XML. It is supported by a variety of products,

including but not limited to:

• Bellview

• CfMC Survent

• Merlin

• Miriad (TNS)

• Preport

• SNAP

An export to Triple-S requires that the survey data file is present in same the directory as the

questionnaire that is exported. For a questionnaire NAMEQ, the data file should be named NAME.DAT.

Export to Triple-S XML

Export to Triple-S version

Sets the Triple-S format to use. Check your statistical analysis package for details. Supported exports

are 1.1, 1.2 and 2.0.

Data file format

Sets the data file format for the export, either fixed or csv (character-delimited). This is only

supported for Triple-S version 2.0.

Using the NIPO ODIN Developer

Page 25

Convert text using code page

Select the code page to convert the export into. Make sure the selected code page matches the

language of your questionnaire.

Subsurvey

Select which survey to export if *NEW was used within the questionnaire.

Language

If more than one language is defined within the questionnaire, select the language to use for the

question and code labels in the export.

Include alphanumeric questions

Include *ALPHA and *NUMBER questions in the export.

Include questions without text and unused questions

Exports questions without text and questions that are never shown due to routing. By default, these

are not exported.

Include null-evaluating filter and dummy questions

Exports questions that use a filter that always evaluates to false (for example *IF [1 = 0]) and

*DUMMY questions. By default, these are not exported.

Recode questions containing code '0'

Code 0 for code categories is by default not supported in the Triple-S XML format. This option

recodes code labels if code 0 was used in the questionnaire.

Include open answers

In addition to optionally coded open-ended questions, this exports open-ended answer verbatim

into the data file.

Open answer length

Sets the maximum number of characters to be used for open-ended answers. Answers beyond the

length limit are truncated.

Check QPS compliance

Checks compliance with Triple-S exports for QPS. If the compliance is not met, a warning message is

displayed.

Open SSS file

Automatically opens the Triple-S variable definition file in the NIPO ODIN Developer after export.

The following characters in the question and code text are escaped when exporting to Triple S XML:

• < is replaced by <

• > is replaced by >

Using the NIPO ODIN Developer

Page 26

• & is replaced by &

• ' is replaced by '

• " is replaced by "

2.5.3 SPSS Portable

An export to SPSS Portable requires that the survey data file is present in same the directory as the

questionnaire that is exported. For a questionnaire NAMEQ, the data file should be named NAME.DAT.

Export to SPSS POR file

Subsurvey

Select which survey to export if *NEW was used within the questionnaire.

Language

If more than one language is defined within the questionnaire, select the language to use for the

question and code labels in the export.

Convert text using code page

Select the code page to convert the export into. Make sure the selected code page matches the

language of your questionnaire.

Retain ODIN data format

Not available for this format.

Include open answers

Not available for this format.

Using the NIPO ODIN Developer

Page 27

Max record length

The maximum number of positions of a single record. Check your statistical analysis software for the

limits. Longer records are split at the configured threshold.

Include questions without text and unused questions

Exports questions without text and questions that are never shown due to routing. By default, these

are not exported.

Include null-evaluating filter and dummy questions

Exports questions that use a filter that always evaluates to false (for example *IF [1 = 0]) and

*DUMMY questions. By default, these are not exported.

Include save script

Not available for this format.

Variable name in front of question text

The question label is preceded by the export name of the variable. Optionally add a line feed to the

variable name.

‘Question n’ in front of question text

All question texts are preceded by the word "Question" followed by the question number originally

used in the questionnaire.

Use question-ID's as variable names

If specified, use names defined with *VAR as variable names.

Use alternative names for random and order variables

Uses a slightly shorter format for *RANDOM and *ORDER variables, where the default first letter is

replaced by R or O respectively.

Write random and order numbers

Where *RANDOM and *ORDER are used with a position definition, this stores the order in which the

codes appeared during the questionnaire in an additional variable.

Use code numbers for Multiple Dichotomy fields

By default, for *MULTI questions all codes are exported as multiple dichotomy questions (mentioned

/ not mentioned). This option places the original code number in the question label for these

questions.

Text for mentioned

For multiple dichotomy questions, sets the label to be used for 'mentioned'.

Using the NIPO ODIN Developer

Page 28

Text for not mentioned

For multiple dichotomy questions, sets the label to be used for 'no mentioned'.

Variable name length

Sets the maximum length for variable names. Choose either 8 or 64, dependent on your SPSS version

in use.

Variable label length

Sets the maximum length for the variable label (the question text). Longer texts are truncated at the

threshold.

Value label length

Sets the maximum length for the value label (the code label text). Longer texts are truncated at the

threshold.

Variable names first letter

Sets the first letter for an exported variable name. This only happens question IDs are not used, or if

the question does not have a question ID defined (*VAR).

Number of chars from multi question

By default, multiple dichotomy questions receive the full original question text in addition to the

code label. This option configures the maximum number of characters from the question label to

include.

Note:

The selected settings for variable names may cause the export to generate variable names that

exceed the maximum number of characters for the SPSS version you are using. A warning is

issued for the minimum limit for older versions - adjust the settings if required.

2.5.4 SPSS-PC

An export to SPSS-PC script files requires that the survey data file is present in same the directory as

the questionnaire that is exported. For a questionnaire NAMEQ, the data file should be named

NAME.DAT. This export creates two files: a variable definition file (SPS file) and a data file (EXT file).

Run the SPS file in SPSS to create the data set.

Using the NIPO ODIN Developer

Page 29

Export to SPSS-PC (script files)

Subsurvey

Select which survey to export if *NEW was used within the questionnaire.

Language

If more than one language is defined within the questionnaire, select the language to use for the

question and code labels in the export.

Write Unicode data

If you need your data in Unicode.

Convert text using code page

Select the code page to convert the export into. Make sure the selected code page matches the

language of your questionnaire.

Retain ODIN data format

Keeps the exported data file (EXT file) in the same format as the original NIPO ODIN data file (DAT

file). Included open-ended answers, if any, are appended at the end of each record.

Include open answers

Includes open-ended answer verbatim in the data file as additional variables.

Max record length

The maximum number of positions of a single record. Check your statistical analysis software for the

limits. Longer records are split at the configured threshold.

Include questions without text and unused questions

Exports questions without text and questions that are never shown due to routing. By default, these

are not exported.

Using the NIPO ODIN Developer

Page 30

Include null-evaluating filter and dummy questions

Exports questions that use a filter that always evaluates to false (for example *IF [1 = 0]) and

*DUMMY questions. By default, these are not exported.

Include save script

Includes the line "SAVE OUTFILE='survey.SAV' /COMPRESSED" where survey is the name of the

survey.

Variable name in front of question text

The question label is preceded by the export name of the variable. Optionally add a line feed to the

variable name.

‘Question n’ in front of question text

All question texts are preceded by the word "Question" followed by the question number originally

used in the questionnaire.

Use question-ID's as variable names

If specified, use names defined with *VAR as variable names.

Use alternative names for random and order variables

Not applicable to Nfield.

Write random and order numbers

Not applicable to Nfield.

Use code numbers for Multiple Dichotomy fields

By default, for *MULTI questions all codes are exported as multiple dichotomy questions (mentioned

/ not mentioned). This option places the original code number in the question label for these

questions. If disabled, the dichotomy questions are renumbered and do not carry any relation to

code numbers used in the questionnaire.

Text for mentioned

For multiple dichotomy questions, sets the label to be used for 'mentioned'.

Text for not mentioned

For multiple dichotomy questions, sets the label to be used for 'not mentioned'.

Variable name length

Sets the maximum length for variable names. Choose either 8 or 64, dependent on your SPSS version

in use.

Variable label length

Sets the maximum length for the variable label (the question text). Longer texts are truncated at the

threshold.

Using the NIPO ODIN Developer

Page 31

Value label length

Sets the maximum length for the value label (the code label text). Longer texts are truncated at the

threshold.

Variable names first letter

Sets the first letter for an exported variable name. This only happens question IDs are not used, or if

the question does not have a question ID defined (*VAR).

Number of chars from multi question

By default, multiple dichotomy questions receive the full original question text in addition to the

code label. This option configures the maximum number of characters from the question label to

include.

Note:

The selected settings for variable names may cause the export to generate variable names that

exceed the maximum number of characters for the SPSS version you are using. A warning is

issued for the minimum limit for older versions - adjust the settings if required.

2.5.5 Ascribe

Open-ended answers in NIPO Fieldwork System surveys may be coded using Language Logic's on-line

coding solution Ascribe. Ascribe imports coding projects using a proprietary (ZIP compressed) XML

format.

An export to Ascribe requires that the survey data file is present in same the directory as the

questionnaire that is exported. For a questionnaire NAMEQ, the data file should be named NAME.DAT.

Ascribe Export

Language

If more than one language is defined within the questionnaire, select the language to use for the

question and code labels in the export.

Using the NIPO ODIN Developer

Page 32

Codeframe file

If the project was previously coded, the current questionnaire may not contain the required Code

Frames. Select the Ascribe Code Frame file to use for coding.

Incremental

Check this option if you plan to add the current export to an existing Ascribe project. Use this feature

to add new data to an existing project.

The result file is called [surveyname]_setup.zip where surveyname is the name of your survey.

See the Ascribe documentation for details on how to create a project from this file or how to add

incremental data to an existing project.

2.5.6 Quantime

An export to Quantime requires that the survey data file is present in same the directory as the

questionnaire that is exported. For a questionnaire NAMEQ, the data file should be named NAME.DAT.

Export to Quantime

Include questions without text and unused questions

Exports questions without text and questions that are never shown due to routing. By default, these

are not exported.

Include null-evaluating filter and dummy questions

Exports questions that use a filter that always evaluates to false (for example *IF [1 = 0]) and

*DUMMY questions. By default, these are not exported.

Subsurvey

Select which survey to export if *NEW was used within the questionnaire.

Language

If more than one language is defined within the questionnaire, select the language to use for the

question and code labels in the export.

Using the NIPO ODIN Developer

Page 33

Convert text using code page

Select the code page to convert the export into. Make sure the selected code page matches the

language of your questionnaire.

Variable label length

Sets the maximum length for the variable label (the question text). Longer texts are truncated at the

threshold.

Value label length

Sets the maximum length for the value label (the code label text). Longer texts are truncated at the

threshold.

Side

Defines the default left column width for the question text and code labels.

Variable name in front of question text

The question label is preceded by the export name of the variable. Optionally add a line feed to the

variable name.

‘Question n’ in front of question text

All question texts are preceded by the word "Question" followed by the question number originally

used in the questionnaire.

Use variable names

Instead of automatically assigning question variable names based on question numbers, use the

labels defined by *VAR.

Include questions without text and unused questions

Exports questions without text and questions that are never shown due to routing. By default, these

are not exported.

Include null-evaluating filter and dummy questions

Exports questions that use a filter that always evaluates to false (for example *IF [1 = 0]) and

*DUMMY questions. By default, these are not exported.

2.6 Imports

The imports for the NIPO ODIN Developer are used to import open-ended coding projects from

Ascribe. This re-imports data previously exported to Ascribe. These imports immediately start an

export for the data analysis software selected in the import dialog.

Using the NIPO ODIN Developer

Page 34

2.6.1 Ascribe

This imports an Ascribe export file. Once a project has been partially or fully coded in Ascribe, it may

be used to merge the coded open-ended answers back into the data file.

Since this import issues and export, it requires that the survey data file is present in same the

directory as the questionnaire that is exported. For a questionnaire NAMEQ, the data file should be

named NAME.DAT.

Ascribe import

Language

Sets the translation to use as defined within the coding project. This only applies if multiple

translations of questions and codes have been made.

Input file

Selects the .ZIP export file to use. Note that this export file must match the currently opened

questionnaire file.

Convert single to multi if coded multi

If any previously single-coded questions have been changed to multiple-coded questions, they are

converted. Otherwise, only the first selected code is accepted.

Output format

Sets the export type to be used. Confirming this dialog brings you to the relevant export dialog.

2.7 NIPO ODIN Developer Configuration

Using the NIPO ODIN Developer

Page 35

2.7.1 Syntax Highlighting

The NIPO ODIN Developer allows for script highlighting in the script editor. You can define the editor

font and the foreground and background colors for:

• Text

• Text selection

• Number

• Comment (remarks)

• Keywords (NIPO ODIN commands)

• Routing commands

• Variable declarations

Select ODIN > Fonts... from the menu to configure syntax highlighting.

Note:

Syntax highlighting does not work in bi-directional (Hebrew, Arabic) mode.

2.7.2 Application Configuration Options

Select Settings > Options from the menu to change the application configuration options. These are

described in this section.

2.7.2.1 ODIN Options

This dialog sets various options for the pop-up menu action to insert template questions.

NIPO ODIN Developer ODIN options

Length multiple answer

Sets the default length inserted for multiple-coded questions.

Using the NIPO ODIN Developer

Page 36

Length open ended

Sets the default length inserted open-ended questions.

Make open always multi

Adds *MULTI to the *OPEN question template.

2.7.2.2 Interview System Options

The configuration options in the Interview System section configure the application file locations for

the NIPO CATI and Nfield previews and various preview-related matters.

NIPO ODIN Developer Interview System Options

Interview System Options

Run interview systems in test mode

When in test mode, no result data is stored for a test interview. Otherwise, DAT-file and O-file data is

created from a preview.

Display stratification dialog

For every *STRAT command in the questionnaire, the preview asks if it should follow the routing for

'stratification reached'. Note that no stratification file or sample is tested for this option.

Unicode data

When not in test mode, this option stores the DAT-file and O-file records in Unicode.

Using the NIPO ODIN Developer

Page 37

2.7.2.3 CATI

CATI Client

Sets the location of the NIPO CATI Client application, which is required for the NIPO CATI preview. By

default, it can be found in the NIPO ODIN Developer application directory. Select ODQES.EXE for the

non-Unicode version or ODQESU.EXE for the Unicode version.

Adjustable screen size

Allows the NIPO CATI Client window to be resized. By default, the window is maximized and appears

on top of all other applications.

Single shot

If set, automatically ends the preview at the end of the questionnaire. Otherwise, it restarts.

2.7.2.4 How to setup the Nfield interview system

To setup the Nfield interview system (to be able to run preview interviews in Nfield),

please enter the Nfield API URL for your area:

• EU: https://api.nfieldmr.com/v1/

• Americas: https://apiam.nfieldmr.com/v1/

• Asia Pacific: https://apiap.nfieldmr.com/v1/

• China: https://apicn.nfieldcn.com/v1/

Also please enter the domain name and user name that were created for you by NIPO.

https://apicn.nfieldcn.com/v1/

Using the NIPO ODIN Developer

Page 38

2.7.2.5 Coding System Options

The Coding System options are obsolete in this version of the NIPO ODIN Developer.

2.7.2.6 Check Options

The Check options are described in section 2.2.

2.7.2.7 Dummy Data Options

This section configures the ODIN > Generate Dummy Data... feature. In particular, it specifies what

channel is assumed to create dummy data. You may opt to select the required channel if your

questionnaire contains any channel-aware routing.

Note: this generates dummy data for NFS only (not for Nfield). You can use this to check

your logic provided it is not dependent on template commands.

Using the NIPO ODIN Developer

Page 39

NIPO ODIN Developer Dummy Data Options

2.7.2.8 Print Options

The Print options allow you to define some settings when printing the currently opened

questionnaire. Note that long lines are automatically wrapped.

NIPO ODIN Developer Print Options

Using the NIPO ODIN Developer

Page 40

Print header and footer

Prints header and footer information: the questionnaire file name and a page number.

Print line numbers

Prints line numbers in front of the code lines, except where lines are wrapped.

2.7.2.9 Autosave Options

The Autosave options make the NIPO ODIN Developer save backups of changed questionnaire files

automatically at configurable intervals.

NIPO ODIN Developer Autosave options

Select Autosave to enable auto-saving. Optionally change the number of minutes between saves.

Once configured, Autosave saves files at the configured interval. If a file is closed in a regular fashion,

its related backup file is deleted. If execution of the NIPO ODIN Developer terminates unexpectedly,

for example due to a system crash or a power failure, the backup files can be found in the folder

where the original is saved. Auto-backups contain the extension OBK. Opening any file for which a

backup is available also opens the backup file.

2.7.2.10 Files Options

The behavior of the File > Open and File > Save dialogs can be configured in the Files options.

Using the NIPO ODIN Developer

Page 41

NIPO ODIN Developer Files Options

File types

This section allows you to configure the file types filtered by the NIPO ODIN saving and loading dialog

boxes.

Click Add type to create a new type. You are asked to specify the name of the type as it appears in

the drop-down box in the file dialogs. Note that it is good custom to include the file filters in round

brackets. Click Remove type to remove unwanted types. In addition, select a type and click Up or

Down to change its order in the list.

For every type, click Add filter to add a file filter. More than one file filter per type may be specified.

Select a filter and click Remove filter to delete it again.

Remember last used file filter

Automatically selects the last used file filter when reopening a Open or Save dialog.

Save files as Unicode

Automatically sets the file encoding to Unicode for file saves.

Page 43

3. Using the NIPO ODIN Script Language

This section provides an overview of NIPO ODIN script language syntax and features.

3.1 Naming Conventions

Names of variables, subroutines and lists have to be unique and may consist of a maximum of 12

characters. Only letters, underscores and numbers are allowed. The first character must be a letter.

3.1.1 Questions

Question numbers are made up of positive numbers (>= 1). No alphabetic (except X, see below) or

other characters are allowed. Each question number has to be unique within one (sub-)

questionnaire. Question numbers can be used indifferently. The NIPO ODIN Developer allows you to

renumber the questionnaire, but this is not deemed necessary. Instead of numbers you can also use

the character X on each question. In this case the question numbers are not defined, and routing has

to be done afterwards. When you renumber the questions, question numbers will be inserted.

The highest question number is 2147483647.

The *QUESTION command may be abbreviated to *Q.

Example question definitions

Valid question definitions Invalid question definitions

*QUESTION 1 *QUESTION 0

*QUESTION 2 *QUESTION –2

*Q 3 *QUEST 3

*QUESTION 2501 *QUESTION 25a

*QUESTION 109 *QUESTION 10.9

*QUESTION 11001 *QUESTION 11.001

*QUESTION 102 *QUESTION 1-2

*QUESTION 2147473647 *QUESTION 2234567890

*QUESTION 1234567890 *QUESTION 1 234 567 890

Using the NIPO ODIN Script Language

Page 44

3.1.2 Data Fields

In the NIPO ODIN Scripting Language it is not necessary to define the starting position of a data field

when you define a question. Only the length of the data field is required. NIPO ODIN keeps track of all

the positions used in the questionnaire. In the NIPO ODIN Developer, you can automatically insert the

starting positions using the Fix Positions command. The starting positions always have to be defined

for Nfield, so please always fix your positions.

In a closed, but not multiple question the number of digits of the highest code number defines the

minimum length of the data field. In a closed, multiple question the highest code number (rather

than number of codes) defines the minimum length of the data field.

In numeric questions the minimum and maximum length depend on the answer that you expect. The

maximum size is approximately 16 positions, including decimals and a floating point.

The highest position for a data field is 200.000. Make sure your analysis program can handle the data

size.

3.2 Variables

You can store a text or a value in a variable to display in a question or to use for routing. Variables

have to be defined with *VARS, *TEXTVARS before they may be used. Variable names are not case-

sensitive.

A variable can be filled with the *PUT or the *SAVE command. Its contents can be displayed with the

*? command. Note that the contents of the variable depend on the type of variable.

A numeric variable (*VARS) may contain any value. Use the string manipulation routines to

change the on-screen appearance of numeric values. When text or a text variable is saved in a

numeric variable, the NIPO ODIN syntax check will give a warning message.

*TEXTVARS defines a text variable and may contain a text of unlimited length. The text may contain

CR/LF which will be used when displaying the variable. Variables may not contain NIPO ODIN

commands, except for *FONT.

You can also create a variable array: *Vars Brand[10] This creates one variable, an

array of 10 numbers. You can now reference each of the variables in the array as:

Brand[1], Brand[2], Brand[3], etc.

Note:

The contents of variables are not stored in the data file automatically. So, make sure that if

you base questions or routing on a variable, you store this information in a (dummy) question.

Using the NIPO ODIN Script Language

Page 45

3.3 System Variables

In addition to custom-defined variables, NIPO ODIN recognizes system variables for various

purposes. Unless mentioned, these system variables do not need to be defined using *VARS.

3.3.1 Test Mode Aware Scripting

Test Mode Aware Scripting allows you to mark the interviews running in the test mode by using the

_ISTEST variable.

When an interview is a test interview _ISTEST is set to 1 (true) or to 0 (false) otherwise.

Example routing for Test Mode Aware Scripting

*QUESTION 1 *CODES 61L1 *IF [_ISTEST]

This question will appear only for test interviews

 1: OK

*QUESTION 2 *CODES 62L1

This question will appear on all platforms

 1: OK

Note: When running the preview or test link with a script that includes _ISTEST, if the interviewer

halts for 15 minutes or more at a screen, the interview gets suspended. If one then resumes the

interview, all statements under _ ISTEST condition are skipped.

3.3.2 Repeat Number

The operator ?R contains the current value of a *REPEAT loop, a number between and including 1

and n where n is the value specified at the *REPEAT statement. Note that this is not the iteration

number - for example, in the third execution in the loop the value of ?R is not necessarily 3. This is

especially true for randomized, controlled, or rotated loops.

In nested blocks, the operator ?R returns the value of the loop where it is located. To access values

from loops above or below the current one, you should use a question or a numerical variable to

pass the value. The operator does not exist outside the scope of a *REPEAT block.

?R is a system variable and can not be changed (for example by using *SAVE or *PUT) nor can it be

displayed directly in question text using the *? command. Copy the value to a variable another

variable to access it (e.g. *PUT Temp [?R]).

Example using the repeat number

*TEXTVARS paper

*QUESTION 2 *CODES L7 *MULTI

Which of the following newspapers do you know?

1: La Repubblica

2: La Stanza

3: The Mirror

Using the NIPO ODIN Script Language

Page 46

4: The New York Times

5: Le Figaro

6: La Libération

7: None *NMUL

*REPEAT 6 *CONTROL Q2 W

*PUT paper Q2, ?R

*QUESTION 3 *CODES L1

How often do you read *? paper?

1: Daily

2: Once a week

3: Once a month

4: Don’t know

*ENDREP

In nested blocks you have to transfer the repeat number ?R of the outer block to a numeric variable

first to be able to use it in the inner block.

Example storing the repeat value

*VARS X,Y,Z

*REPEAT 3

*PUT X [?R]

*REPEAT 2

*PUT Y [?R] ** this line is only necessary to display the value of ?R

*PUT Z [X+?R] ** or *PUT Z [X+Y]

*QUESTION 1

*?X + *?Y = *?Z

*ENDREP

*ENDREP

3.3.3 Timer

Please note that timer only works in CAPI.

Stopwatch[3] can be used as a timer that you have to reset yourself setting the value to 0. This

timer starts as soon as the interview is started or once it is reset.

The script below uses the timer to measure the time of selecting a code, pressing enter and

measuring the length of a (section of) an interview.

Timers Example

*PUT Stopwatch[3] [0]

*QUESTION 1 *CODES L1

This is a question.

1: Continue

*PAGE

The total time to conduct this interview was *? Stopwatch[3] seconds

*END

Using the NIPO ODIN Script Language

Page 47

3.3.4 Elapsed Time Function

To know how much time a respondent spend answering a (set of) question(s) there is a function

?Elapsedtime(QuestionID).

It measures the time spent on a question: if the same question has been visited multiple times, it

holds the total time spent. This functionality also simplifies checking how long certain sections of

your questionnaire take so that you can detect the so called “speeders”.

This function takes a list of question IDs separated by comma(s) as an input and returns the sum of

time spend on those questions. That number matches the elapsed time you would find in the audit

log.

Example 1

*TEMPLATE NfieldChicago

*QUESTION 1 *CODES 61L1 *ID FirstQ

First question

1:ok

2:no

*QUESTION 2 *CODES 62L1 *ID SecondQ

Second Question

1:ok

2:no

*QUESTION 3 *CODES 63L1 *ID ThirdQ

Third Question

1:ok

2:no

*VARS EsTQ[4]

*PUT EsTQ[1] [?ELAPSEDTIME(Q{FirstQ})]

*PUT EsTQ[2] [?ELAPSEDTIME(Q2)]

*PUT EsTQ[3] [?ELAPSEDTIME(Q3)]

*PUT EsTQ[4] [?ELAPSEDTIME(Q1,Q{SecondQ},Q3)]

*PAGE

First Q: *?EsTQ[1]

Second Q: *?EsTQ[2]

Third Q: *?EsTQ[3]

Total Q: *?EsTQ[4]

For repeated questions, like repeat blocks or subroutines we have the following rule:

• If ?Elapsedtime()is executed within a *REPEAT or a subroutine, it will return the value

for that iteration (for a *REPEAT) or the value for that instance (for a subroutine).

• If elapsed time is called outside of *REPEAT or subroutine, while the question itself is in

one of these, it will return the sum of elapsed times for every iteration or instance of that

question so far.

Example 2

*TEMPLATE NfieldChicago

Using the NIPO ODIN Script Language

Page 48

*PAGE

Now let's do a repeat.

*REPEAT 2 *FIELD 70L2

*VARS RepNum

*PUT RepNum [?R]

*QUESTION 4 *CODES 1L1 *ID RepeatQ

Question for repeat iteration *? Repnum

1:ok

2:no

*VARS ETRepQ

*PUT ETRepQ [?ELAPSEDTIME(Q{RepeatQ})]

*PAGE

The question in this repeat took *? ETRepQ seconds

*ENDREP

*VARS ETTotalRepQ

*PUT ETTotalRepQ [?ELAPSEDTIME(Q{RepeatQ})]

*PAGE

The whole repeat took *? ETTotalRepQ seconds.

Note: if a question is skipped due to routing, the ?Elapsedtime() will return 0 for that question.

3.3.5 Language

The LANGUAGE variable contains the name of a define language section currently in use. See the

*LANGUAGE command for more details.

3.4 Expressions

NIPO ODIN supports the use of expressions in questionnaires. An expression may indicate all sorts of

data but will always result in a value. Expressions are used in two different ways:

• As a boolean; the result of the expression is either false (the expression has as result value 0) or

true (the expression has as result the value 1).

• To make calculations or manipulations with a value as result.

Some commands will require or allow for an expression as argument. Expressions have to be

enclosed in square brackets.

Expressions are evaluated from left to right and operators apply to the operands immediately left

and right. NIPO ODIN expressions do not follow the regular precedence rules! If a left-to-right

evaluation is not appropriate, you can use parenthesis to evaluate an expression first.

Using the NIPO ODIN Script Language

Page 49

3.4.1 Expression Operators

Expression operators

Operator Description Use Note

Q Question reference Qn Reference to question n or its

contents

 Length of field nLm Position n, length m

F Field test QxFn Contents of field (cell) number n

within form-question x

S Refers to the statement in a matrix QxSn Answer of question x for the nth

statement

, code-test Qx,n 1 if present, otherwise 0

- code-string Qx,n-m Code string

- minus sign -n Negation of n

not #Qx 1 if no answer in question x,

otherwise 0

negation #n 1 if value n not true,

otherwise 0

+ add n+m Sum of n and m

- subtract n-m Difference of n and m

* multiply n*m Product of n and m

/ divide n/m Division of n and m

^ exponent n^m Exponent m of n

& logical AND n&m 1 if both not 0, otherwise 0

\ logical OR n\m 0 if both 0, otherwise 1

RAN random value RAN n Random value from 0 up to and

including n-1

= equal to n=m Results in 1 if true or 0 if false

< less than n<m Results in 1 if true or 0 if false

> more than n>m Results in 1 if true or 0 if false

<= less than or equal to n<=m Results in 1 if true or 0 if false

>= more than or equal to n>=m Results in 1 if true or 0 if false

Using the NIPO ODIN Script Language

Page 50

Operator Description Use Note

<> not equal to n<>m Results in 1 if true or 0 if false

?JSON

Returns the value for a value pair from a

JSON string ?JSON(JSONString,”Valu

eName”]

Will not return anything if the

ValueName does not match or the

JSONString is an invalid JSON

?BUTTON(Qn)
Returns the number of the button if
the question was answered with a
button.

*IF [?BUTTON(Q1) = 2]

*GOTO 2

Number of the button if the

question was answered with a

button, or -1 if the button was not

used.

?R repetition number ?R current (logical) repetition number

TO Range n1 TO n2 Range n1 through n2

; separate ranges n1 TO n2 ; n3 TO n4 Range n1 through n2 or n3 through

n4

QxM order of mentions in a *MULTI

question

QxM

QxR display order of a question, when

using *RAN or *ROT

QxR

QxMy order of mentioned number y in a

*MULTI question. Returns the code

number of the y mentioned from

question x.

QxMy

(see example below)

QxRy display order Used in combination

with *ORDERnumber y of a question,

when using *RAN or *ROT. Returns

the code number of the y

randomized or rotated.

QxRy

Question reference

The reference to a question by means of Qn where n represents the question number. For example,

Q10 references question 10. If it concerns a code test then more code values may occur; these will be

treated as a logical or.

Code string

Any given number of codes separated by one or more commas or a code range indicated by a dash.

Valid codes consist of the digits 0 up to and including 9, or B for a blank value. For example, Q2,B

returns 1 (true) is Q2 is blank, Q3,1-5 returns 1 if in Q3 any of the codes in the range 1-5 are marked,

and Q4,2,4,8,12 returns 1 if Q4 contains any of the codes 2, 4, 8, or 12 ar marked.

Using the NIPO ODIN Script Language

Page 51

Values n or m

The values n or m may represent any of the following:

• Number

• Expression or variable

• Text enclosed in double quotes with, possibly, the embedded contents of a variable

Example of usage QxMy

Out of 5 choices in a multiple question 1, the user asked to select between three and five options. In

question 3, the first 3 selected options are shown in the order of selection (the 1st selected option is

shown on top, the 2nd is shown below it, etc.).

*QUESTION 1 *CODES 61L5 *MULTI

Please choose at least 3 options

1: one

2: two

3: three

4: four

5: five

*QUESTION 2 *CODES 66L5 *MULTI *DUMMY

1: one

2: two

3: three

4: four

5: five

*INCLUDE Q2 [Q1M1]

*INCLUDE Q2 [Q1M2]

*INCLUDE Q2 [Q1M3]

**Display to the user the 1st 3 selected choices in order of selection.

*QUESTION 3 *CODES 88L9 *MULTI *CONTROL Q2 W *ORDER Q1M

1: one

2: two

3: three

4: four

5: five

3.4.2 Examples of Expressions

Examples of expressions are presented here. Note that expressions are always specified between

square brackets. The expressions in these examples may be either assigned to a variable or applied

to an *IF filter.

Expression Examples

Expression Results in

[100] The value 100.

[RAN 100] A random between 0 and 99 inclusive.

[Total[3]] The value stored in the third element of the number array TOTAL.

[TOTAL2 * 3 + 10] the value stored in the variable TOTAL2, multiplied by 3 and then increased by 10.

Using the NIPO ODIN Script Language

Page 52

[Q11,1] 1 if code 1 was marked in Q11, otherwise 0.

[Q12,1,2,3] 1 if any of the codes 1, 2 or 3 were marked in Q12.

[Q13 >= 18] 1 if the value in Q13 is equal to or larger than 18.

[Q11,1 \ Q12,1,2,3] 1 if code 1 is marked in Q11 or if code 1, 2 or 3 is marked in Q12.

[Q12,1,2,3 & Q13 >= 18] 1 if code 1, 2 or 3 is marked in Q12 and Q13 is equal to or larger than 18.

[Q12] The value of Q12 if Q12 is a single-coded or numerical question; the highest marked

code if Q12 is a multiple-coded question.

[Q13 = Q14] 1 if the (highest) value of Q13 is equal to the (highest) value of Q14

[#(Q5 \ Q6) & Q7 = 1] 1 if either Q5 or Q6 does not contain a value and Q7 equals 1. The brackets are

required to let the expression evaluate Q5 and Q6 first.

[Q5 , 1 TO 3] 1 if any of the codes 1, 2 or 3 are marked in Q5.

[Q5 , 1 TO 3 ; 6 TO 8] 1 if any of the codes 1, 2, 3, 6, 7, or 8 are marked in Q5.

3.4.3 Common Mistakes in Expressions

This section describes common mistakes made in expressions, where a syntax check does not reject

the syntax used but where a misunderstanding exists on how the expression is evaluated. These

examples focus of filtering constructions.

Incorrect expressions and how to correct them

Incorrect expression What it was intended to do What it does Correct expression

*IF [20 < Q2 < 40] Check if Q20 is between the

values 20 and 40.

This firsts checks if

20 is smaller than

Q2 (result 0 or 1)

then if the result is

smaller than Q40.

*IF [Q2 > 20 & Q2 < 40]

Using the NIPO ODIN Script Language

Page 53

*IF [Q20,3\4\5] Check if Q20 has code 3, 4 or 5

marked.

This checks if Q20

has code 3. Then it

checks if either the

result of the

expression, or 4, or

5 are true. Any value

above 0 is always

considered true,

therefore the

expression always

results in 1.

*IF [Q20,3,4,5]

*IF [Q21=1,2,3] Check if Q21 has code 1, 2 or 3

marked.

This checks if Q21 is

equal to the

expression 1,2,3. The

latter expression

checks if position 1

in the DAT-file

contains a 2 or a 3.

*IF [Q21,1,2,3]

*IF [Q21 = 1-3] Check if Q21 has code 1, 2 or 3

marked.

This checks if the

value of Q21 equals

-2 (1-3).

*IF [Q21,1,2,3]

*IF [#Q21 = 1] Check if Q21 is not equal to 1 This first checks if

Q21 is not empty,

then compares the

result to 1. In other

words, the

expression returns 1

if Q21 is not empty.

*IF [Q21 <> 1]

3.5 String manipulation routines

NIPO ODIN includes a set of routines for text (string) and text variable manipulation. These routines

can be used for various purposes, including (but not limited to):

• Checking if a string meets the requirements for input. For example, a routine to check the

respondent input is an Email address with valid syntax.

• Reformatting text to make it more suitable for displaying the text in follow-up questions.

• Reformatting text to make it more suitable for storage in output data.

Using the NIPO ODIN Script Language

Page 54

• Checking if a text has certain text (pattern) matches, for example for finding answers in *OPEN

ended questions.

NIPO ODIN considers strings as ranges of unique characters and is therefore indifferent to code page

use.

All string manipulation routines expect a text variable or a static text string as input parameter. If the

answer to a question must be checked, use *SAVE or *PUT to store the answer in a text variable first.

Strings routines are considered expressions, and therefore always require square brackets to be

evaluated.

3.5.1 STRFINDMATCH

Syntax

?STRFINDMATCH(<string>,<regex>)

Description

Returns a substring from a string that matches the first occurrence of a regular expression. If no

match is found, an empty string is returned. NIPO ODIN follows the Microsoft regular expression

implementation. Regular expressions are a powerful tool to find particular texts in an answer given

by a respondent by using matching patterns rather than literal text. A complete reference for these

regular expressions can be found on the Microsoft Developer Network

(http://msdn.microsoft.com/en-us/library/az24scfc.aspx).

Arguments

<string>

String to search for the regular expression.

<regex>

Regular expression that the substring must match.

Example

The following example retrieves the first number found in an open-ended answer.

*VARS value

*TEXTVARS answer

*QUESTION 10 *OPEN L1 *SAVE answer

Let me find the value in your text:

*PUT value [?STRFINDMATCH(answer,"^\d+")]

*Q 20

Value found: *? value

http://msdn.microsoft.com/en-us/library/az24scfc.aspx

Using the NIPO ODIN Script Language

Page 55

3.5.2 STRHASMATCH

Syntax

?STRHASMATCH(<string>,<regex>)

Description

Checks if a string matches a regular expression. Returns 1 if true, 0 otherwise. NIPO ODIN follows the

Microsoft regular expression implementation. Regular expressions are a powerful tool to find

particular texts in an answer given by a respondent by using matching patterns rather than literal

text. A complete reference for these regular expressions can be found on the Microsoft Developer

Network (http://msdn.microsoft.com/en-us/library/az24scfc.aspx).

Arguments

<string>

String to search for a match with the regular expression.

<regex>

The regular expression to search for.

Example 1

The following example ensures an answer only contains letters and digits.
*TEXTVARS zipcode

*Q 10 *ALPHA L4 *SAVE zipcode

Please enter your zip code:

*Q 20 *CODES L1 *IF [?STRHASMATCH(zipcode,"\W")]

A zip code may only contain characters and letters.

1: Go back and correct *BACK 10

Example 2

This more advanced example uses a regular expression that checks the syntax validity of the Email

address.

*TEXTVARS email

*Q 10 *ALPHA L40 *SAVE email

What is your Email address?

*PUT email [?STRLOWER(?STRTRIM(email))]

*Q 20 *CODES L1 *IF [#(?STRHASMATCH(email,"^([a-z0-9_\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})$"))]

It appears that *?email is not a valid Email address.

1: Go back and correct *BACK 10

3.5.3 STRINDEX

Syntax

?STRINDEX(<string>,<findstring>)

http://msdn.microsoft.com/en-us/library/az24scfc.aspx

Using the NIPO ODIN Script Language

Page 56

Description

Returns the start position of a substring in a string, or 0 if the substring was not found. The match

must be case-sensitive. Note that 1 indicates the first position of a string.

Arguments

<string>

String in which to search.

<findstring>

String to search for.

Example

*TEXTVARS answer

*Q 10 *OPEN L1 *SAVE answer

What is your opinion of the European Union?

*Q 20 *IF [?STRINDEX(answer,"!")>0]

You seem to have formed a strong opinion on the subject.

3.5.4 STRLENGTH

Syntax

?STRLENGTH(<string>)

Description

Returns a number indicating the length of the specified string or text variable.

Arguments

<string>

String to calculate the length of.

Example

*TEXTVARS zip

*Q 10 *ALPHA L4 *SAVE zip

Enter the zip code:

*Q 20 *CODES L1 *IF [#(?STRLENGTH(zip)=4)]

The zip code must be 4 characters or digits!

1: Go back *BACK 10

3.5.5 STRLOWER

Syntax

?STRLOWER(<string>)

Using the NIPO ODIN Script Language

Page 57

Description

Convert a string to lowercase.

Arguments

<string>

String to convert to lowercase.

Example

*TEXTVARS email

*Q 10 *ALPHA L40 *SAVE email

What is your Email address?

*Q 20 *ALPHA L40 *DUMMY

Email in lowercase

*COPY Q20 [?STRLOWER(email)]

3.5.6 STRREPLACE

Syntax

?STRREPLACE(<string>)

Description

Replaces text in a string.

Arguments

<string>

String in which you want to replace some characters.

<findstring>

The exact sequence of characters you want to replace.

<replacestring>

The exact sequence of characters you want as a replacement.

Example

*TEXTVARS OriginalString, FindString, ReplacementString, ResultString

*PUT OriginalString "Hello World"

*PUT ResultString [?STRREPLACE(OriginalString, "World", "Universe")]

*PAGE

*?OriginalString

*?ResultString

Please note:

Using the NIPO ODIN Script Language

Page 58

• The <string> and <findstring> parameters cannot be empty.

• The function is case-sensitive.

• If the answer to a question must be checked, use *SAVE or *PUT to store the answer in a

text variable first.

• String manipulation routines are considered expressions, and therefore always require

[square brackets] to be evaluated.

3.5.7 STRSUBSTR

Syntax

?STRSUBSTR(<string>,<start>,<length>)

Description

Returns a substring of a string.

Arguments

<string>

String to return a substring of.

<start>

Start position of substring in the string.

<length>

Number of characters to return, starting from the start position. Use -1 to return the substring from

the start position until the end of the string.

Example

*VARS len

*TEXTVARS answer

*REPEAT 10

*Q 10 *OPEN L1 *SAVE answer

This is the echoing question. Type something.

*PUT len [?STRLENGTH(answer)]

*PUT answer [?STRSUBSTR(answer,len/2+1,-1)]

*Q 20

... *? answer...

*ENDREP

3.5.8 STRTRIM

Syntax

?STRTRIM(<string>)

Using the NIPO ODIN Script Language

Page 59

Description

Removes leading and trailing spaces from a string.

Arguments

<string>

The string to trim.

Example

*TEXTVARS name

*Q 10 *ALPHA L40 *SAVE name

What is your name?

*PUT NAME [?STRTRIM (name)]

*Q 20

Welcome to the questionnaire, *? NAME.

3.5.9 STRUPPER

Syntax

?STRUPPER(<string>)

Description

Convert the string to uppercase.

Arguments

<string>

String to return in uppercase.

Example

*TEXTVARS answer

*Q 10 *OPEN L1 *SAVE answer

What brand is your smartphone?

*PUT answer [?STRUPPER(answer)]

*Q 20

The following questions evaluate your experience with your *?answer.

3.6 Form Field References

Expressions may refer to fields in a *FORM question using the F operator.

Using the NIPO ODIN Script Language

Page 60

Example of *FORM field references

*Q 10 *FORM *CONTROL Q5 W

At the garden center, how many items did you buy of each?

1: Flowers: *NUMBER L2 5: Flower price *NUMBER L2.2

2: Trees: *NUMBER L2 6: Tree price *NUMBER L2.2

3: Rakes: *NUMBER L2 7: Rake price *NUMBER L2.2

4: Shovels: *NUMBER L2 8: Shovel price *NUMBER L2.2

*VARS items

*PUT items [Q10F1+Q10F3+Q10F5+Q10F7]

The references with operator F do not refer to the codes used in the *FORM question, but to the

index of the field when searching for fields from the top-left to the bottom-right of the screen in

rows. In other words, the field behind "Flowers" is field 1, the field behind "Flower price" is field 2, the

field behind "Trees" is field 3 and so forth.

Field numbers do not change even if fields are hidden using the *CONTROL command. For example,

field 6 remains field linked with "Rake price" regardless of using *CONTROL.

A reference to a field that does not exist in the *FORM question will always receive to the value of the

first field in the question, regardless of whether that field was shown. For example, Q10F10 or

Q10F15 would both refer to Q10F1.

Fields can also be referenced to copy values into:

Copying values into fields

*COPY Q10F1 [50]

*COPY Q10F2 [1.25]

Field indexes may be referenced using a variable or an expression. The following is valid syntax to

add all price values:

Referencing fields using the repeat number

*VARS totalprice

*put totalprice [0]

*REPEAT 5

put totalprice [totalprice+Q10F(2?R)]

*ENDREP

However, variables or expressions may not be used to store values into the fields. The following

syntax is invalid:

Invalid field reference syntax

*REPEAT 8

*COPY Q10F(?R) [0]

*ENDREP

Using the NIPO ODIN Script Language

Page 61

3.7 Custom Properties

3.7.1 Overview

Custom properties are useful way of defining and storing user specific information at

question/categories/list level. This feature has high potential and use in automation where

information/resources are picked up based on request/user input from global setup/repository.

They are also useful in driving variable content in the script.

3.7.2 Custom Properties in Nfield

NIPO ODIN uses the *PROPERTIES command to attach properties to questions and categories, and a

property function to query properties. These properties are intended for segmentation and querying

and filtering on questionnaire properties in the reporting phase. The categories’ properties can also

be used for filtering in the questionnaire script with the property function in expressions and as an

additional argument with *USELIST.

Custom properties, in Nfield, are little different than the way they are used in Dimensions. Nfield

allows little freedom in terms of where & how you can use them however that doesn’t limit the

alternate ways of using it.

3.7.3 property() Function

A built-in function has to be called for fetching values of custom properties. This function

needs few compulsory arguments. Below describes how it should be used in ODIN script –

?property(Q[question number],[category number],"key")

property() is a function to fetch the custom prop values. It cannot be used without

passing arguments.

Q[question number] is a question from which custom prop value it to be fetched.

[category number]is a category name (response index) which will be fetched from

the above-mentioned question. This is numeric index passed with categories. The category

number can also be an expression.

Key is a name of custom property value of which is to be fetched in.

Using the NIPO ODIN Script Language

Page 62

Example 1

*TEXTVARS moodtype

*PUT moodtype [?property(Q1, Answer, “Feeling”]

Since it is a function, it returns property value as text type which is to be stored into text variable

before use. You can directly use the function as per your needs. The function can also be used as

expression under conditional statements.

Example 2

*IF [?property(Q1, Answer, “mood”) = “Bored”]

Example 3

Filtering a question based on custom property defined in other question
*VARS Answer

*QUESTION 1 *CODES 61L1 *PROPERTIES “segment=hotel” *SAVE Answer

How will you rate the service during your stay at hotel Marriot?

1: Very Good *PROPERTIES “emotion=Positive;mood=Happy”

2: Good *PROPERTIES “emotion=Positive;mood=Happy”

3: Average *PROPERTIES “emotion= Negative;mood=Bored”

4: Bad *PROPERTIES “emotion=Negative;mood=Bored”

*QUESTION 2 *OPEN 62L1 *IF [?property(Q1, Answer, “mood”) = “Bored”]

What was that which made you feel bored?

Here Question 1 is about rating the overall service at hotel Marriot. The answer (index)

is saved in a variable (Answer) which was later used in property() to fetch the value

of custom property mood.

Next question (Q2), is filtered on custom property mood and asked only if respondents

have felt bored (i.e. value of custom property mood).

Example 4

Summarizing (netting) the responses of one question into other dummy (summary) variable at back

of script.
*VARS Answer, propval

*QUESTION 1 *CODES 61L2 *SAVE Answer

Please enter region you live in.

1: Schleswig-Holstein *PROPERTIES “DE_Reg=1”

2: Hamburg *PROPERTIES “DE_Reg=1”

3: Niedersachsen *PROPERTIES “DE_Reg=1” 4: Bremen *PROPERTIES

“DE_Reg=1”

5: Nordrhein-Westfalen *PROPERTIES “DE_Reg=2”

6: Hessen *PROPERTIES “DE_Reg=3”

7: Rheinland-Pfalz *PROPERTIES “DE_Reg=3”

8: Saarland *PROPERTIES “DE_Reg=3” 9: Baden-Wurttemberg

*PROPERTIES “DE_Reg=3”

10: Bayern *PROPERTIES “DE_Reg=3”

11: Berlin *PROPERTIES “DE_Reg=4”

12: Mecklenburg-Vorpommern *PROPERTIES “DE_Reg=4”

13: Sachsen-Anhalt *PROPERTIES “DE_Reg=4” 14: Brandenburg

*PROPERTIES “DE_Reg=4”

15: Thuringen *PROPERTIES “DE_Reg=4”

16: Sachsen *PROPERTIES “DE_Reg=4”

*QUESTION 2 *CODES 63L1 *DUMMY

1: North

Using the NIPO ODIN Script Language

Page 63

2: West

3: South

4: East

*PUT propval [?PROPERTY(Q1, Answer, “DE_Reg”)]

*COPY Q2 [propval]

*PAGE

propval = *? propval

Answer = *? Answer

Here Question 1 (region) is asked from respondent, and zone at Question 2 is

back-coded using custom properties defined at Question 1.

There could be many ways of implementing it using custom properties; this is just one way

to fulfill the requirement of summarizing regions into zones.

Example 5

Use in multi-language projects the property for the data in the sample rather than the category text
for quota control purposes.

*SAMPLEDATA sGender

*VARS ansQ102

*QUESTION 102 *CODES L1 *SAVE ansQ102

Select your gender.

1: male *PROPERTIES "gender=Male"

2: female *PROPERTIES "gender=Female"

*PUT sGender [?PROPERTY(Q102, ansQ102, "gender")]

*LANGUAGE Dutch

*QUESTION 102

Kies uw geslacht.

1: man

2: vrouw

3.7.4 In *USELIST command

Properties can be used to filter the categories shown in questions with the *USELIST command. When

more than one property is specified they are combined with a logical and.

Syntax

*USELIST "ListName{,[property]=[value]}{;[property]=[value]}{;...}"

Example

Display in a question only the categories available in their region.

*LIST "Outlets"

1:Outlet 1 *PROPERTIES "nl=Y;be=N;de=N"

2:Outlet 2 *PROPERTIES "nl=N;be=Y;de=Y"

3:Outlet 3 *PROPERTIES "nl=Y;be=Y;de=N"

4:Outlet 4 *PROPERTIES "nl=N;be=N;de=Y"

5:Outlet 5 *PROPERTIES "nl=N;be=N;de=Y"

6: Outlet 6 *PROPERTIES "nl=Y;be=Y;de=Y"

*QUESTION 101 *CODES L1

Choose your country

Using the NIPO ODIN Script Language

Page 64

1:Belgium *PROPERTIES "country=be”

2:Germany *PROPERTIES "country=de”

3:Netherlands *PROPERTIES "country=nl”

*TEXTVARS sCountry

*PUT sCountry [?PROPERTY(Q101, Q101, "country")]

*QUESTION 201 *CODES L1

Which outlet did you visit?

*USELIST "Outlets, *? sCountry=Y"

3.7.4.1 See Also

*PROPERTIES ... 214

*USELIST .. 282

Using the NIPO ODIN Script Language

Page 65

3.8 Date Functions

3.8.1 Overview

Date functions are designed to make calculation of dates easier.

We accept 2 date/time formats for the date functions:

1. YYYY-MM-DD HH:MM:SS(+offset), where the offset is optional. So

[2023-09-12 12:30:45+0400] or [2023-09-12 12:30:45]

Or

2. The native Nfield format produced by the *DATE command when stored in a text variable:

[2024/07/15 20:30:18 +060 2]. Date functions will ignore the day of week from this

format.

3.8.2 Adding Seconds to a Date

?DATETIMEADD(<datetime>, <offset>)

The offset is offset from the <datetime> in seconds. If you want to add 10 minutes to the

date , the offset needs to have a value of 600. Negative numbers are allowed to subtract

data.

The result will be a new datetime value, with the same format as the input <datetime>

value.

Example:

*PUT NewDate[?DATETIMEADD(OldDate, Seconds)]

Where NewDate will hold the OldDate plus the Seconds.

3.8.3 Calculating the Time Difference Between Two Dates

?DATETIMESPAN (<datetime1>, <datetime2>)

Example:

Using the NIPO ODIN Script Language

Page 66

*PUT TimeDifference [?DATETIMESPAN(datetime1, datetime2)]

Where TimeDifference will hold the seconds between datetime1 and datetime2. Both

datetime formats need to be exactly the same, including the offset if included. The result will be

the difference in seconds obtained by doing <datetime1> - <datetime2>.

3.8.4 Obtaining the Day Number of the Week

?DATETIMEDAYOFWEEK (<datetime>)

Example:

*PUT WeekDay [?DATETIMEDAYOFWEEK(datetime)]

Where WeekDay is a number, which maps to a day-of-the-week. 1 through 7, Monday to Sunday.

Note: the native *DATE command also gives the number of the week day, when stored as an index
variable, but it counts from Sunday to Saturday.

3.8.5 Obtaining the Week Number

?DATETIMEWEEKNUMBER (<datetime>)

Example:
*PUT WeekNumber [?DATETIMEWEEKNUMBER(datetime)]

Where Weeknumber holds the number of the week.

Weeknumber is according to the ISO 8601 specification, which describes the following:

The week number can be described by counting the Thursdays: week 12 contains the
12th Thursday of the year.
The ISO week-numbering year starts at the first day (Monday) of week 01 and ends at
the Sunday before the new ISO year (hence without overlap or gap). It consists of 52
or 53 full weeks. The first ISO week of a year may have up to three days that are
actually in the Gregorian calendar year that is ending; if three, they are Monday,
Tuesday and Wednesday. Similarly, the last ISO week of a year may have up to three
days that are actually in the Gregorian calendar year that is starting; if three, they are
Friday, Saturday, and Sunday. The Thursday of each ISO week is always in the
Gregorian calendar year denoted by the ISO week-numbering year.

Quota

Page 67

4. Quota

4.1 NIPO Academy Sessions on Quota

We strongly recommend that you watch the four NIPO Academy sessions on quota that we’ve created

here (sessions 51 through 54) to get a thorough introduction to quotas from basics to advanced.

Session 54 is specifically devoted to quota problems we often see at NIPO helpdesk. So, if you have a

problem with quotas, please first check this video to see if your problem is mentioned. If yes, follow

the steps in the video to solve it, and only in case it still does not work for you contact the NIPO

helpdesk with full details of what you have done already and what the outcome was.

4.2 What is Quota?
A quota is a subset of respondents with specific characteristics, such as a common zip code, city,

gender, or age group. In Nfield Manager, we can create quota frames and specify the specific subsets

of respondents we are looking for and how many of each subset we need for our project. Here is an

example of a simple quota frame:
Total Target: 100

Age: Below 35 40 (min)

Age: 35 and above 40 (min)

In this case 100 respondents will be interviewed: at least 40 aged below 35, 40 older ones, and 20 that

could be any age.

So, a quota frame is the entire quota setup for a project.

A total Target is the required number of interviews for the entire quota frame. In our example, 100.

A quota variable is the criteria we use to subdivide the quota frame for the project, in this example,

Age. Quota variables are used in the ODIN script as sample variables.

Quota levels are the cells that make up to the quota variable. In our example, for the quota variable

Age, there 2 quota levels: ‘Below 35’ and ‘35 and above’.

Level Target – required number of interviews for a specific quota level. Sometimes we just call the

level target “quota” for that level. In our example, both quota targets are equal to 40.

The quota count for a level increases by 1 when an interview for that quota is successfully completed.

This is what the ODIN script for this quota would look like:

*SAMPLEDATA age

*QUESTION 1 *CODES 101L1

Are you above or below 35 years old?

1:Below 35

2:35 and above

https://nipo.com/services/academy-videos

Quota

Page 68

*IF [Q1,1] *PUT age "below 35"

*IF [Q1,2] *PUT age "35 and above"

4.2.1 Steps to Create Quota Frame

Let us take another example, where the requirement is to interview a number of respondents in each

of several different age groups, and certain number of them have to be males, and others -- females.

To create the quota for this survey, we would first need to define a quota frame for it in Nfield. This is

done in 3 steps:

1. Define quota variables & levels;

2. Order variables;

3. Define targets.

The quota variables and levels that you define in Nfield Manager need to be called exactly the same

as in the ODIN script (they are case sensitive). When you enter a quota variable name, the Nfield

Manager automatically suggests a questionnaire variable name for you.

4.2.2 How to Define Quota Variables and Levels

To define the quota variables and levels:

1. In Nfield, go to the Quota tab of the Setup Survey left-side menu.

2. Click on Add a Quota Variable link.

3. Add the quota variable “Gender”, and then the level “Male”.

4. Click on the plus button to add another level, “Female”.

5. Repeat for the “Age”.

Quota

Page 69

If you need to set up a large quota frame, you can create a list of quotas in Word, Excel,

or the Notepad containing the variable names and level names and copy and paste directly

into the quota frame.

Place each variable and level on a separate line in your source file, as shown in the

example. The first item is always the Variable name:

Place your cursor on the Variable name input as shown in screenshot below, then copy the quota

cells from your source file and paste them in using CTRL-V or right click-Copy:

Quota

Page 70

To copy only the levels: Place your cursor on the Level value label input as shown in the

below screenshot, then copy only the levels needed from your source file (excluding the

variable name) and paste them:

If one of your quota variables allows for multiple answers (the users are allowed to

select/satisfy multiple sub-quotas for this variable), please move the Multi toggle to “On”

position (as in example below):

Quota

Page 71

Please note: you can also perform all the steps above through the script. See section *QUOTA.

4.2.3 How to Organize and Order the Quota Variables

The next step is to organize your quota variables. You can change the order of quota

variables, and define if and how they interlink.

In our example we have created two quota variables “Gender” and “Age”. If these are

separate quota variables, your frame structure would look like this (two variables, each

with two levels):

Gender Male Female

Age below 35 35 and above

Any targets you would put in this quota frame would be evaluated per variable and level.

You can also make these two variables interlinked. Interlinked quota variables mean that

“Gender” and “Age” are evaluated in combination of each other, like this:

Gender & Age

 Male & below 35 Male & 35 and above

 Female & below 35 Female & 35 and above

Quota

Page 72

In ‘Order and nest variables’ each quota variable (Gender/Age) is represented by a green

box. You can move the boxes up or down to reorder them. Or, using the arrows on the left

and right side of each box <> you can make the quota variables interlinked (move one

under the other).

Please note: If you are using interlinked quotas, if your resulting quota exceeds three

levels, you should really consider what you are doing. Interlinked quota variables, four

levels deep, means you are using a tremendous number of sample, just to find a very small

number of people.

The result is then this, when you tick “Advanced setup”:

If you have a quota variable that you would like to use more than once, you can simply

click the Copy button next to that variable at the Order & Nest Variables step with

Advanced setup turned off. This will create a new instance of the quota variable, which

reduces manual effort.

Quota

Page 73

4.2.4 How to Add Quota Targets

The third and final step is to add targets for each quota variable and item. In this example we will

assume the quotas are interlinked. Enter either only the minimum, only the maximum, or both min

and max targets for each variable and item until you have entered the targets for all your quota

variables.

You will normally want to achieve your minimum targets with some oversampling to be safe.

Quota

Page 74

4.2.5 Max Overshoot Option

Online surveys only.

Nfield has a feature called Max Overshoot for Online surveys. With this feature, the system takes into

account not only (successfully) completed interviews, but also the currently active interviews, when it

evaluates whether from a quotas perspective a new respondent is still needed for the survey.

This feature helps against getting large overshoots in quota cells, for instance in the following

scenarios:

• When a survey is started, it is immediately flooded with a large number of respondents,

because the project manager wants quick results. If by chance many of these concurrent

respondents fit in one specific quota cell, that cell easily gets overfilled, especially when the

quota evaluation is done at the start of interview, while the filling of a cell is in Nfield only

incremented at the end of an interview.

• When a survey is nearing the deadline, with some quota cells requiring just one or two more

respondents, and some extra sample gets thrown at the survey. Maybe that sample has been

specifically selected to fill these quota cells. If by chance the respondents all connect at

once, the cells again easily get overfilled.

With max overshoot enabled, the manager elects to take into account active interviews as well as

completed interviews. For example, if a quota cell requires two more respondents and max overshoot

is configured at 2, then at most 4 concurrent interviews can be active on that cell (2 respondents

needed + 2 max overshoot respondents), meaning overshoot for that quota cell will be limited to two

at most. All the other respondents starting an interview for that quota (even before the above 4

respondents are done) will be stratted out.

To enable Max Overshoot, please set the toggle Limit overshoot of active interviews to On, and enter

the number for the maximum overshoot allowed:

Quota

Page 75

Notes:

• Max over shoot works only on an explicit maximum target. So if you only fil in minimum

targets the overshoot will have no effect.

• Max over shoots only works on the lowest target of the quota tree. So only on the lowest

child cells. Not on parent cells.

• The overshoot is max overshoot per cell, not a max overshoot on the entire quota frame.

4.2.6 Changing Quota Frames

Once your survey is published you are can always change your targets (both total and level

targets). You can also change your quota frame (add/remove/update levels and quota

variables).

You can to discard any quota frame changes that have not yet been published, if, for

example, you edit a quota frame but later decide not to keep the changes, or accidentally

upload a quota frame meant for a different survey into a running survey by clicking on the

Discard Unpublished Quota Frame Changes button that appears after you saved your

quota frame changes:

Quota

Page 76

When changing the quota frame, there will be a new quota frame created, but the old one will still be

there. It will just no longer be active. Each of the quota frames (the old one(s) and the active one) will

have their own achievements stored, and its own targets.

There can be only 1 quota frame active: the latest published one.

You can look at all the quota frames with their corresponding achievements in Nfield Monitor

Fieldwork/Quota tab (using the pull-down to select the version of the quota frame). In paradata you

can see to which quota frame a specific interview belongs, since quota frame’s ETAG is shown for

each interview.

Please note:

• When changing quota frames you will need to adjust the targets accordingly to what was

already achieved in the previous frame, and what still needs to be achieved. So, when new

quota is published, the targets should be recalculated taking into account the achievements

for the old quota frame(s). For example, if in the old frame the target for a cell was 10, with 6

successful interviews so far. Then the quota frame was updated, we need to make sure that

the target for this cell is 4 (if we still want 10 total for that cell).

• Total Target belongs to each quota frame version (not to all of them), so each time you

update the quota frame, please adjust the Total Target accordingly.

• New ETAG (an unique, random GUID number, found in paradata) for a survey is generated

each time you do a Publish. Let's look at an example:

1. When you first create a quota frame, and publish it, an ETAG will be generated (let's call

it ETAG1).

2. If you make a change the quota frame, and re-publish, an ETAG2 will be generated.

3. If you then make a change to other aspect of the survey (such as a script, etc.), but not

the quota frame, and publish, an ETAG3 will be generated. But in the Monitor

Fieldwork/Quota, Select Version you will only see quotas with ETAG1 and ETAG2. So if you

Quota

Page 77

wanted to see all the interviews with quota with ETAG2, need to see all the interviews

with ETAG2 and ETAG3.

• Changing quota frame during fieldwork is not desirable. Mistakes happen, so we do allow it,

but it’s a bad practice.

4.2.7 Uploading and Downloading Quota Frames

If you are setting up a survey and have a similar quota frame set up already in another survey, you

can simply download it from there and then upload it into your current survey. This is especially

helpful when you are working with large or complex quota frames, because it means you do not have

to create them from scratch manually, saving you a lot of time and effort.

You can upload and download Quota frames directly in Nfield Manager in Setup Survey / Quota tab:

4.2.8 Quota in ODIN Script

The actual quota checks take place inside the ODIN script, using the *STRAT command.

The respondents are usually checked early in the script to see if they fit the particular quota

levels.

4.2.9 Quota Out in Paradata

When an interview is rejected because the quota has been fulfilled, it is reflected in the

paradata. There could be multiple reasons why an interview can be rejected. The paradata

will only list the first reason found. For more information, please see section Paradata for

the Quota Out.

4.3 Minimum and Maximum Targets
Minimum and maximum level targets are needed to limit the number of interviews for a quota

level(s). For a quota level you can set:

Quota

Page 78

• only minimum targets,

• only maximum targets,

• both minimum and maximum targets.

Here are several examples of how to add target limitations:

4.3.1 Only a Total Target Entered

If a quota frame has only the total target entered (for example, 10), it means that after 10 interviews,

all the following interviews will not be allowed (will *STRAT-out).

4.3.2 Total Target and Max Targets for Levels are Entered

Let us say we have a quota frame with the total target entered (16), and for all the quota levels only

the maximum values are entered (4):

In this case, the interviewing will stop (*STRAT-out) for each level when 4 interviews are reached for

that level, which will get us the total of 16 interviews.

4.3.3 If the Total Target is Not the Same as the Sum of Maxes

Let’s say we have a quota frame as below:

Quota

Page 79

Here, the total target is not equal to the sum of maximum targets of levels. In this situation, the

interviewing for each quota level will stop when the 4 interviews for that level are reached. But the

interviewing for other levels can continue till the total of 12 interviews is reached or that level’s total

of 4 is reached. One or more levels in this frame will not reach their maximum target, since the total

target will be reached before that. One of the levels might be left empty (if the other 3 all reach 4

first).

4.3.4 Total Target and Minimum Level Targets are Entered

If only the minimum targets would be entered, and no total target, the interviewing can

continue indefinitely. For every level at least 4 interviews are needed, but the maximum

number per level is not set. So that is why a total target needs to be set here to limit the

number of interviews. If the total is 16, then only 4 interviews for each of the 4 levels will

be done.

Quota

Page 80

4.3.5 Total Target Smaller than the Sum of Level Minimums

If you try to enter the total (15) that is smaller than the sum of the levels’ minimums (16),

you will not be able to save the frame, until corrected.

4.3.6 Total Target Greater than the Sum of Level Minimums

If the total target is greater than the sum of the level minimums, then (in the example of the

frame above), we will get at least 4 interviews in every level, and in one or more levels we

will have more interviews than 4, till the total will become 20. For example, might have

the following results:

Quota

Page 81

Brand 1: 6 interviews

Brand 2: 4 Interviews

Brand 3: 6 interviews

Brand 4: 4 interviews

Total: 20 interviews

4.3.7 Combining Maximum and Minimum Level Targets

If we want to limit the number of interviews in a single level, but still make sure that a certain

minimum is reached for that level, we need both minimum and maximum values filled:

In the case above every level will have at least 5, but no more than 10 interviews. The total will be 30,

so the results might look something like this:
Brand 1: 5 interviews

Brand 2: 10 Interviews

Brand 3: 9 interviews

Brand 4: 6 interviews

Total: 30 interviews

If we did not have minimum values here, one of the brands might have not gotten any interviews at

all:
Brand 1: 10 interviews

Brand 2: 0 Interviews

Brand 3: 10 interviews

Brand 4: 10 interviews

Total: 30 interviews

Quota

Page 82

4.3.8 Overshoot

All the examples above are correct in a “perfect” world. Unfortunately, in the real world an overshoot

of interviews can happen: more interviews done on a level than the maximum set for this level. So,

for example, the maximum for the level might be 10, but the actual number of interviews that got

done on this level is 12. The overshoot can happen if multiple respondents are doing an interview on

that level at the same time, while the level was close to its maximum value. This can happen in large

online surveys.

Let us look at what consequences the overshoot will have for the 6 cases above:

1. Only a total target is entered: you will end up with a few extra interviews than the total

target. So, if the total target was 10, in case 3 respondents started an interview on the 10th

target at close to the same time (before the first one to start is finished), you will end up with

the total of 12 interviews.

2. Total target and max targets for levels are entered: can end up with one or more of the

levels overshot by a few interviews, and the total will be correspondingly overshot:
Max Actual

Brand 1: 4 5

Brand 2: 4 4

Brand 3: 4 4

Brand 4: 4 4

Total: 16 17

3. If the Total Target is Not the Same as the Sum of Maxes: similar to the previous case, can end

up with one or more levels overshoot by a few interviews, and the total will correspondingly

be overshot:
Max Actual

Brand 1: 4 5

Brand 2: 4 3

Brand 3: 4 3

Brand 4: 4 3

Total: 12 14

4. Total target and min targets for levels are entered: since every level has a minimum of 4 (in

our example), and the total maximum is 16, we normally would just have 4 interviews for

each level. If one or more of the levels overshoot the 4, the others will still be allowed to fill

to the minimum of 4 interviews. Please note that the minimums are always stronger than the

maximum: if we have a minimum number of interviews to fill for a level, it will always be

allowed, even if the total (which is a maximum number) has to overshoot.
Min Actual

Brand 1: 4 5

Quota

Page 83

Brand 2: 4 4

Brand 3: 4 5

Brand 4: 4 4

Total (Max): 16 18

6. Total target greater than the sum of level minimums: similarly to the case 4 above, even

when the total is reached, if one of the levels has not yet reached the minimum target, it will

be allowed to do that, even if the total has to overshoot:

Min Actual

Brand 1: 4 6

Brand 2: 4 4

Brand 3: 4 7

Brand 4: 4 4

Total (Max): 20 21

7. Combining maximum and minimum level targets: the levels will end up at least at the

minimum and normally, less or equal than the maximum number of interviews, but it can

happen that one of more levels overshoots the maximum. The total in that case might also

end up overshot if it is necessary to get to the minimum for some remaining level:

Min Max Actual

Brand 1: 5 10 5

Brand 2: 5 10 11

Brand 3: 5 10 10

Brand 4: 5 10 5

Total (Max): 30 31

4.4 Least-filled Quota
A script should be able to select a path throughout a questionnaire based on the least-filled quota

levels, or offer selections based on a list ordered by least-filled quota levels. For example, if a

respondent has experience with more than one brand, we can decide to ask questions about one or

more of the brands whose quota levels are least filled so that these quota levels are prioritized when

trying to fulfill quota.

Syntax

*GETLFQLIST <Nrlevels><LevelName><QuotaVar>

Where

• Nrlevels is the count of quota levels that are still open (numeric variable).

• LevelName is an array with the quota levels sorted from least filled to most filled.

Quota

Page 84

• QuotaVAr is the quota variable name -- the name of the *SAMPLEDATA variable as defined

in the questionnaire. This may either be a single value sample data variable or an array. The

sample table column must be associated with a quota variable.

Note: Command *GETLFQLIST is only supported in ODIN Developer 5.18 and above.

Usage Notes

• *CONTROL <ArrayVariable> <W|N> on a *QUESTION supports using an array of texts.

The text(s) in the array are matched against the category texts in the question, and the

related codes are displayed or hidden.

• *SAVE <ArrayVariable> on a *QUESTION will take the selected categories of a question

and save their labels in the indicated variable (clearing the existing contents of the variable)

in the order of answers, up to a maximum as defined by the size of the array.

• *ORDER <ArrayVariable> on a *QUESTION displays the categories in the order in which

they are in the array, by label.

• The ArrayVariable in these commands can either be a *TEXTVARS array or a

*SAMPLEDATA (text) array. Matching is done case-insensitive.

• Nrlevels – If you have 6 levels, and 4 of them are not yet filled, Nrlevels will return

number 4 (referring to the first 4 levels returned in the array variable).

Important: *CONTROL and *ORDER match array texts against the category labels of the Default

language. Likewise, *SAVE stores category labels coming from the category list in the Default

language. It is important that scripter and researcher ensure that category texts and sample table

contents match.

Example 1: Least Filled Sorting

The script below returns models sorted to relative filling order (least filled first).

**Least filled command script

*TEMPLATE NfieldChicago

**Setup vars for least filled

*SAMPLEDATA model_nr

*TEXTVARS ModelLevel[4]

*VARS NrOfNotFilledModelLevels

*GETLFQLIST NrOfNotFilledModelLevels ModelLevel model_nr

**Show the result of the least filled command

**Least filled are sorted on relative fillings based on the minimum quota

*PAGE

LevelsReturned: *? NrOfNotFilledModelLevels

Least filled 1: *?ModelLevel[1]

Quota

Page 85

Least filled 2: *?ModelLevel[2]

Least filled 3: *?ModelLevel[3]

Least filled 4: *?ModelLevel[4]

*END

The following quota frame needs to be setup up for an Nfield survey to correspond with this script:

1. Create a variable model_nr.

2. Add 4 levels for it (Model1-Model4).

3. Define targets for each level.

Next, we need to:

4. Upload a script that will allow us to choose one of the quota levels. For example, this:

*TEMPLATE NfieldChicago

*SAMPLEDATA model_nr

*QUESTION 1 *CODES 101L1 *SAVE model_nr

Please choose a model

1:Model1

2:Model2

3:Model3

4:Model4

*END

5. Publish.

6. Start Fieldwork.

7. Do several interviews selecting different model number.

We can then check in Monitor Fieldwork/Quota how many interviews were already done for each

quota level:

In the case above, we can see that Model2 is the least filled quota at this time (only 2 successful

interviews out of the minimum target of 20, so only 10% filled); Model3 is the most filled (4 out of 10 –

40% filled).

If we now upload the Least Filled Script (above, under the Example 1), re-publish, and run the live

interview, we will see the levels sorted least to most filled:

Quota

Page 86

Example 2: *ORDER Command with Least Filled Quota

Upload the script below to the same survey:

**Least filled command with ordering

*TEMPLATE NfieldChicago

*SAMPLEDATA model_nr

*TEXTVARS ModelLevel[4]

*VARS NrOfNotFilledModelLevels

*GETLFQLIST NrOfNotFilledModelLevels ModelLevel model_nr

**Show least filled order using the array returned by the *GETLSTQLIST as the argument for an *ORDER command

*QUESTION 10 *CODES 61L1 *ORDER ModelLevel

1:Model1

2:Model2

3:Model3

4:Model4

*END

Publish and run a live interview. We get the same least filled model order as in the previous example,

but now in a question:

Quota

Page 87

Example 3: *CONTROL Command with Least Filled Quota

*CONTROL command can now also be based on the *CODES label instead of only the *CODES

number. To make this work, use a text array (like the one *GETLFLIST returns) as an argument. Also,

you can adjust the array size to only receive the X number of least filled levels. Here is an example

script:

*TEMPLATE NfieldChicago

*SAMPLEDATA model_nr

**Use array size 1 to only receive the first of the least filled quotas

*TEXTVARS ModelLevel[1]

*VARS NrOfNotFilledModelLevels

*GETLFQLIST NrOfNotFilledModelLevels ModelLevel model_nr

**Use control to show only the labels returned by the *GETLFQLIST, in this case only one

*QUESTION 10 *CODES 61L1 *CONTROL ModelLevel W

1:Model1

2:Model2

3:Model3

4:Model4

*END

If you upload and run this script in the same survey we’ve been using earlier, it will only return

Model2, which is the highest one in the least filled quota list:

Example 4: Fill the Sample Data with Least Filled Quota, Store in DAT-File

*TEMPLATE NfieldChicago

**set up the vars for the least filled quotas

*SAMPLEDATA model_nr

*TEXTVARS ModelLevel[4]

Quota

Page 88

*VARS NrOfNotFilledModelLevels

**Get the least filled quotas for the quota model_nr

*GETLFQLIST NrOfNotFilledModelLevels ModelLevel model_nr

**Show the order of the least filled, just to check

*QUESTION 10 *CODES 61L1 *ORDER ModelLevel

Least filled order

1:Model1

2:Model2

3:Model3

4:Model4

**Use the most lacking quota for this interview

*PUT model_nr [ModelLevel[1]]

** For easy data processing store it also in the Ufile

*QUESTION 11 *CODES 62L1 *DUMMY *VAR ModelUsed

ModelUsed for this interview

1:Model1

2:Model2

3:Model3

4:Model4

** Loop over the models until it matches the nr 1 returned and then store that code in the dummy Q11

*TEXTVARS BrandToCheck

*REPEAT 4

*PUT BrandToCheck Q11, ?R

*IF [BrandToCheck = ModelLevel[1]] *INCLUDE Q11 [?R] *END

*ENDREP

*END

Example 5: Least Filled Quota with Mins and Maxes filled, Single Quota Variable

Let’s create the following quota frame (very similar to example 1, but this time with maximum values

also filled):

Upload a script below, publish, and start fieldwork.

*TEMPLATE NfieldChicago

*SAMPLEDATA color

*QUESTION 1 *CODES 101L1 *SAVE color

Please choose a color

1:Blue

2:Red

3:Green

4:Yellow

Quota

Page 89

*END

Do several interviews selecting different colors. You can then check in the Monitor fieldwork/Quota

how the fieldwork is going. Here we can see that for 2 of the levels the minimum target is met.

Please note:

• A checkmark next to the minimum target and the green color mean that the min target is met

for the level.

• A cross next to max target and an orange color mean that the maximum target for that level

is overshot.

**Least filled command script

*TEMPLATE NfieldChicago

**Setup vars for least filled

*SAMPLEDATA color

*TEXTVARS Colors[4]

*VARS NrOfNotFilledModelLevels

*GETLFQLIST NrOfNotFilledModelLevels Colors color

**Show the result of the least filled command

**Least filled are sorted on relative fillings based on the minimum quota

*PAGE

LevelsReturned: *? NrOfNotFilledModelLevels

Least filled 1: *?ModelLevel[1]

Least filled 2: *?ModelLevel[2]

Least filled 3: *?ModelLevel[3]

Least filled 4: *?ModelLevel[4]

*END

The result is this:

Quota

Page 90

It might seem surprising that the number of not filled levels is 3, since two of the four levels have

their minimum targets already met. The reason is that while least filled quota only looks at the

minimum targets, the NrOfNotFilledModelLevels is based on what the *STRAT command considers

filled or not filled level target. In our example, level Red has not yet reached its maximum target (it is

currently at 4 interviews, while the max target for it is 5), and the Total Target of 18 still allows it to

reach the maximum target (we only have 12 interviews done, and if Red gets another interview, it will

not interfere with Green or Yellow getting to their minimum targets). So, level Red is added to Yellow

and Green in the NrOfNotFilledModelLevels to make it 3.

If the total target in this case was 15, instead of 18, it would not be possible to fill in Green and

Yellow’s minimum targets while still having another interview for the Red, so Red would have been

excluded from the NrOfNotFilledModelLevels, and it would have been 2.

Notes

Please remember that:

• Least filled quota levels are taken over minimum targets.

• Least filled is based on relative fillings.

• List returned is sorted from least filled level to most filled.

• If levels are filled equal, they are returned in the random order.

• Overshot levels are also returned, ordered from least overshot to most overshot.

• Number of Not Filled Levels is based on what the *STRAT command considers filled or not

filled level target.

4.5 Multi Quotas
To turn quota variable to multi-select, please turn the slide Multi on when creating a quota.

Quota

Page 91

Example 5: Multi Quota with Least Filled

Ask which brands are known by the respondent. Continue the interview for the 3 least known brands.
*TEMPLATE NfieldChicago

**Brands is a multi-quota so we use an array as sample data, array must be big

enough to hold all the quota levels

*SAMPLEDATA Brands[26]

*TEXTVARS BrandName[26], LeastFilledBrand, SelectedBrand

*VARS NrOfBrands, NrOfSelectedBrands, NrOfKnownBrands

*LIST "Brands"

1:BrandA

2:BrandB

3:BrandC

4:BrandD

5:BrandE

6:BrandF

7:BrandG

8:BrandH

9:BrandI

10:BrandJ

11:BrandK

12:BrandL

13:BrandM

14:BrandN

15:BrandO

16:BrandP

17:BrandQ

18:ModelR

19:ModelS

20:ModelT

21:ModelU

22:ModelV

23:ModelW

24:ModelX

25:ModelY

26:ModelZ

*Get the brands known by the respondent

*QUESTION 10 *CODES 61L26 *MULTI *VAR "KnownBrands" *UIOPTIONS "columns=3"

Which of these brands do you know?

*USELIST "Brands"

**if respondent does not know at least 3 brands screen him/her out

Quota

Page 92

*COUNT NrOfKnownBrands Q10

*IF [NrOfKnownBrands < 3] *GOTO 9998

*QUESTION 20 *CODES 87L26 *MULTI *VAR "SelectedBrands" *DUMMY

Brands used for interview

*USELIST "Brands"

*GETLFQLIST NrOfBrands BrandName Brands

*PUT NrOfSelectedBrands [0]

**start repeat to loop over all returned brands in order of least to most filled

*REPEAT 26

*PUT LeastFilledBrand [BrandName[?R]]

**start repeat to check known brands against the least filled

*REPEAT 26 *CONTROL Q10 W

*PUT SelectedBrand Q10,?R

**if known brand match least filled then include this a selected brand raise the nr of brand already selected and end the loop for this

known brand

*IF [LeastFilledBrand = SelectedBrand] *INCLUDE Q20 [?R] *PUT NrOfSelectedBrands [NrOfSelectedBrands + 1] *END

*ENDREP

*IF [NrOfSelectedBrands = 3] *END **If 3 brands are selected stop looping

*ENDREP

**Fill the quota variable with the selected brands

*REPEAT 26 *Control Q20 W

*PUT Brands[?R] Q10,?R

*ENDREP

**Show the selected brands on screen

*QUESTION 999 *CODES 139L2 *CONTROL Q20 W

Selected brands

*USELIST "Brands"

*END

*Q9998

This survey is not for you

*ENDNGB

For this script we need to create a new survey with quota frame containing a variable Brands, with

26 levels in it called BrandA-BrandZ, and Multi slide turned on. Let’s set only minimum targets for

each level to 2.

Quota

Page 93

When we run the interview for this survey, we are first presented all the brands, out of which we

select, let’s say, 6 brands: D, I, N, P, T, X. We are then presented the 3 least selected brands (out of

these 6), and since at this point all 6 are least selected, it will randomly select 3 brands from this list:

let’s say P, N, D.

If we run this script again, and choose the same 6 brands: D, I, N, P, T, X, we will be presented with I, T,

X (not necessarily in that order), since the other 3 brands were chosen in the previous run.

4.5.1 Linking Multi Quota with Other Quotas

Multi quota variable should be at the end of the branch. If it is placed anywhere else, it is not

possible to interlock it with other quota variables.

In the picture below, Brands, which is a multi-quota variable (identifiable by the plus next to its

name) is linked to a quota variable Gender:

It is also possible to link all the brands, but only if the multi quota variable, Brands, is the last one in

the chain, as in the picture below:

Quota

Page 94

If you try to link Brands to, for example, Age while Age is below it, you will get an error, and will not

be able to save:

4.6 Quota frame validation
When a quota frame is defined and target values are filled in, we want to ensure that the configured

quota frame is valid, meaning the given minimum and maximum values in the frame are achievable

by a set of counts that for all levels is higher than the minimum (if configured) and lower than the

maximum (if configured).

In brief, this means that:

Quota

Page 95

1. for each level, the minimum value (if configured) must be lower than or equal to the

maximum value (if configured)

2. for each level that has nested single-code variables, the sum of the minimum values of the

nested variable categories has to be lower than or equal to the level's maximum value

3. for each level that has nested single-code variables, the sum of the maximum values of the

nested variable categories has to be higher than or equal to the level's minimum value

4. for each level that has nested multi-code variables, the minimum values of the nested

variable categories have to be lower than or equal to the level's maximum value

If for a quota frame one of these conditions is not met for at least one level, that quota frame is not

consistent, and during fieldwork no set of level fillings can be achieved that meets with the quota

criteria. The user should be shown an error in this case and suggestions for improvements should be

shown. For case 1, the respective level should be marked, for cases 2-5, the respective 'parent' level

should be marked.

4.7 Counting Quota Level More than Once per Interview

For some scenarios, you might want to count quota level more than once per interview.

Nfield allows to write the same value to a different index in an array of the *SAMPLEDATA

variable. This value will count as many times as it occurs for quota.

Example script:

*VARS numberoftrips

*SAMPLEDATA MyCountries[10]

*QUESTION 1 *NUMBER 61L2 *MAX 10

How many trips abroad did you make past year?

*PUT numberoftrips Q1

*REPEAT 10 *FIELD 63L70

*VARS iteration

*PUT iteration [?R]

*IF [iteration > numberoftrips] *END

Quota

Page 96

*QUESTION 2 *CODES 1L7 *MULTI *SAVE MyCountries[?R]

Where did you go on trip #*? iteration ?

1:Netherlands

2:Spain

3:Greece

4:France

5:Portugal

6:Poland

7:India

*ENDREP

4.7.1.1 See Also

*CONTROL .. 116

*GETLFQLIST .. 145

*ORDER ... 206

*STRAT .. 252

Nfield Academy videos 51 through 54

https://nipo.com/services/academy-videos

Suspend and Resume Interview

Page 97

5. Suspend and Resume Interview

5.1 Ways to Suspend an Interview
There are 4 ways in which an interview can fall into the Suspend status:

1. For the Online interviews, if the respondent does not have any activity on an interview for 15

minutes, the interview will be suspended.

2. For the Online interviews: if the interviewers chooses the Pause button.

3. For the CAPI interview, if the interviewer presses the device’s Back button, and chooses the

“Save and Suspend” option.

4. For both channels, if the script ends the interview with a response code that allows a

suspend (standard system code 29).

5. For CAPI interviews, you can also schedule appointments via script. To do that you need to first

upload the list of custom response codes you want to use in the Nfield Manager making sure to

check the option ‘Appointment’ for each of these codes. You are now able to use the *ENDST

command to get to the appointment dialog during the interview, so that an interviewer can

create an appointment with the respondent.

Notes:

• All suspended interviews are counted as drop-outs in the Nfield Manager/Monitor screen.

• As soon as an interview is suspended, it is no longer an active interview. So it will no longer

be counted for quota if you have turned on “Limit Overshoot of Active Interviews” (see

chapter 4, Quota).

Suspend and Resume Interview

Page 98

5.2 Resume Interview
For CAPI, the only types of surveys for which the interviews can be resumed are CAPI with Addresses.

For Online, you can only resume interviews if you use response keys.

When the interview is resumed, it is restored in the exact same state as it was when it was paused.

The system does it by re-running the interview, and filling it with the answers given in the previous

session. There is one exception: the *STRAT command is always run and checked against the current

quota. So, if the quota has been filled in the meantime, the resumed interview will be sent to quota

full state.

So quota will be handled as is. Everything else will run as it was. That means that an interview date

that was stored (using the *DATE command) in the previous run of the interview (the date of the 1st

run), will still be the date that is stored in the resumed interview. You can modify this behavior using

the *INIT command.

Also, any variables that you pass in the URL are always processed as was resuming, and not as is. For

example, if you are starting an interview with a parameter gender=Male, and you are resuming the

interview with gender=Female, the value of gender will still be Male for the resumed interview. This

might be unwanted, especially if you are stepping out of an interview to run a 3rd party application. In

that case, you would probably want the information gathered to be passed back to the Nfield

interview. This is possible by using a special result code 107. So normally you would pause an

interview with code *ENDST 29 hand it over to the 3rd party application, but if you to read the

(updated) parameters, you would pause with code *ENDST 107.

Order in which script items are executed when resuming:

• If you have an *INIT block, normally, it will be executed first when you run an interview. If you

pause, and then resume an interview, the *INIT block will be executed after the script has

resumed until the point where it needs input from the respondent, but before the page is

rendered.

• If you use a result code 107, the URL variables will be re-read before the *INIT block is run.

Notes:

• Be aware that if you resume on a different version of the script, it could impact where the

interview is resumed. So, if for example, if a question was added before the question on

which the interview was stopped, it will on resume go to the new question. The same will

happen if the routing was changed – on resume, the new route will be used.

• If you use code 107, the interview will still be counted in the quota. If you resume this

interview, it will not be checked against quota again.

Command Index

Page 99

6. Command Index
This section contains an alphabetically sorted list of NIPO ODIN script commands.

6.1 *?
Purpose

Retrieves the contents of a variable or array as text.

Syntax

*? <var | var[n|expression] | QquestionNumber | QquestionId>

Description

The contents of a variable or array are retrieved and put in place of the command and will be

processed as text. This command may occur at any place where text may occur.

In addition to referencing variables, *? supports references to question number and question ID.

Arguments

var

This is the name of the variable from which the contents are retrieved.

var[n|expression]

When an array-variable is used, this the name of a variable followed by (between square brackets) a

positive integer or expression that indicates the element-number of this array.
QquestionNumber/ QquestionId

Pipes the answer to the named question. In case of a multi-coded question, it pipes in the label of
the lowest mentioned code.

Remarks

• You can use uppercase and lowercase names indifferently; variable names are case insensitive.

• System variables may be displayed, but do not need to be defined using *VARS or *TEXTVARS.

Example 1

*TEMPLATE NfieldChicago

*TEXTVARS Gender,Age

*QUESTION 1 *CODES L1 *SAVE Gender

Int. type gender of respondent

 1: Male

 2: Female

*QUESTION 2 *NUMBER L2 *SAVE Age

How old are you?

*PAGE

So you are a *?Gender of *?Age years old.

Command Index

Page 100

Result of Example 1

Example 2

*TEMPLATE NfieldChicago

*TEXTVARS txt[4]

*PUT txt[1] "This is a text."

*PUT txt[2] "Another text."

*PUT txt[3] "Third text."

PUT txt[4] "The fourth line contains: '?txt[1] *?txt[2] *?txt[3]'"

*PAGE

*? txt[1]

*? txt[2]

*? txt[1] *? txt[2] *? txt[3]

*? txt[4]

Command Index

Page 101

Result of Example 2

Example 3

*TEMPLATE NfieldChicago

*TEXTVARS Number, Price, PricePerFax, PricePerFaxFormatted

*FONT 0 "10 Arial"

*QUESTION 1 *FORM

Specify count and price:

1:Number of fax machines bought: *NUMBER 61L3 *SAVE Number

2:Total price paid: € *NUMBER 64L4.2 *SAVE Price

*PUT PricePerFax [Q1F2 / Q1F1]

**format PricePerFax to 2 spaces after the dot (cents).

*PUT PricePerFaxFormatted [?STRSUBSTR(PricePerFax,1,?STRINDEX(PricePerFax,".")+2)]

*QUESTION 2 *CODES 70L1

You bought *? Number fax machines for € *? Price?

So the average price per fax machine was € *? PricePerFax ?

1: Yes

2: No

Command Index

Page 102

Result of Example 3

Using a variable (*?) to reference ids

In expressions it's possible to use a variable instead of a direct id reference. For example:

PUT result [Q1, {?id_variable}]

where id_variable is a variable containing the value of the id. In this case, if a category with the id

of the value of id_variable is not found then the expression will evaluate to 0, the same as if the

category with the id existed but was not answered.

Example 1

*QUESTION 1 *NUMBER 61L1 *ID "NumberId"

How many fruits do you eat daily?

*QUESTION 2 *OPEN 62L10 *ID "FruitId"

What fruit you eat *?Q1 times daily?, in roughly 67% of the cases the interview jumps to question 100.

Referencing question number using *?.

Example 2

*QUESTION 1 *NUMBER 61L1 *ID "NumberId"

How many fruits do you eat daily?

*QUESTION 2 *OPEN 62L10 *ID "FruitId"

What fruit you eat *?Q{NumberId} times daily?

Referencing question id using *?.

Command Index

Page 103

6.1.1.1 See Also

*ID ... 160

*PUT... 217

*SAMPLEDATA ... 246

*SAVE (codes option) 249

*SAVE (question option) 247

*TEXTVARS ... 268

*VARS ... 286

Command Index

Page 104

6.2 *ALPHA
Purpose

Defines a text question.

Syntax

*ALPHA [pos]L<length>|<pos>

Description

This command is always used in combination with *QUESTION and must be specified after

*QUESTION on the same line. Defines a question that expects an alphanumerical answer. Contrary to

an *OPEN question the length of an answer to an *ALPHA question is limited and the answer is

stored in the DAT-file.

*ALPHA can be also used to define a text filed in *FORM questions.

Arguments

pos

This is the start of the data field where the data is written in the DAT-file.

length

This is the length of the data field.

Example 1

*TEMPLATE NfieldChicago

*QUESTION 1 *ALPHA 61L20

What is your first name?

Result:

Command Index

Page 105

Example 2 (in *FORM)

*TEMPLATE NfieldChicago

*QUESTION 1 *FORM *BUT 99 "Refusal"

Please, fill in your name and address:

1:Name : *ALPHA 73L30

2:Street: *ALPHA 103L40

3:Place : *ALPHA 143L20

Result:

6.2.1.1 See Also

*CODES ..114

*LIST (definition) 176

*NUMBER ... 201

*OPEN (question type) 203

*QUESTION .. 220

*FORM ...141

Command Index

Page 106

6.3 *BACK
Purpose

Jumps back to a previous question.

Syntax

*BACK <n|[expression]>

Description

The interview will return to the question specified in the argument. It does in fact the same as

pressing the Back button as many times in succession as needed to reach that question.

When the *BACK command is executed, all commands and answers between the current question

and the question you are returning to are undone in the data (they are still visible on the screen as

they are still in memory cache, but unless re-submitted, they will not be saved into the data file), as if

you actually stepped back through the questionnaire. This is major difference with the command

*GOTO.

Arguments

n|expression

This is a positive integer or expression that indicates an existing question.

Remarks

With *BACK you can only jump back to a question that was previously displayed according to the

current routing. If the indicated question was never displayed, the *BACK command is ignored.

Example

*VARS tot

*VARS answer[3]

*QUESTION 1 *FORM

What proportion of travels are done by

(Int. don’t know = ‘999’)

1:Bus *NUMBER L3 *RANGE [0 TO 100;999] *SAVE ANSWER[1]

2:Train *NUMBER L3 *RANGE [0 TO 100;999] *SAVE ANSWER[2]

3:Car *NUMBER L3 *RANGE [0 TO 100;999] *SAVE ANSWER[3]

** If one of the values is a Don't Know, skip the check

*IF [Q1F1 = 999 \ Q1F2 = 999 \ Q1F3 = 999] *GOTO 3

*PUT tot [Q1F1 + Q1F2 + Q1F3]

*IF [tot > 95 & tot < 105] *GOTO 3

*QUESTION 2 *CODES L1

Your percentages must add up to 100%!

*? answer[1]

*? answer[2]

*? answer[3]

*? Tot

1: Go back and try again *BACK 1

*QUESTION 3

In this example, we jump back to the first question to correct the percentages if they are not in the

range 95 to 105.

Command Index

Page 107

6.3.1.1 See Also

*GOTO .. 153

*STRAT .. 252

Command Index

Page 108

6.4 *BLOCK
Purpose

You can show multiple questions on one page, with optional conditions with the *BLOCK command.
This is a useful feature for displaying related questions, or to speed up interviewing, displaying more
information on fewer screens. In the Example 1 below, the 2nd question will be shown on the same
page, next to the 1st question, only if the answer to the 1st question is "1", otherwise it does not get
shown. If we remove the condition, both questions will be displayed on the same page.
*BLOCK opens what you wish to display on the page. The page ends with *ENDBLOCK.

Syntax

*BLOCK

Questions, arguments, scriptcode

*ENDBLOCK

Description

Creates multiple questions on the same page.

Remarks

All forms of routing are supported in *BLOCK. Unlike in *FORM command, you can use *CODES on

questions in *BLOCK. You can also create *IF and use *CONTROL statements in *BLOCK referring

to other questions inside that *BLOCK.

Note: It is not allowed to use *BUT, *MATRIX, *REPEAT, *SAVE, *PUT or *COPY commands in

*BLOCK.

Example 1

*TEMPLATE NfieldChicago

*BLOCK

*QUESTION 1 *CODES 61L1

Q1 What car do you drive?

1: BMW

2: Audi

3: Volkswagen

*QUESTION 2 *CODES 62L1 *IF [Q1, 1]

Q2 Do you drive it often?

1: Yes

2: No

*ENDBLOCK

Command Index

Page 109

Example 2

*TEMPLATE NfieldChicago

*BLOCK

*QUESTION 1 *CODES 61L1

What is your gender?

1: Male

2: Female

9: Do not wish to answer

*QUESTION 2 *CODES 70L9 *MULTI *IF [Q1, 1,2]

Have you ever used the following shaving products?

1: Gilette Razors

2: Palmolive Shaving Cream

3: Gilette Aftershave

9: None of these *NMUL

*ENDBLOCK

We begin by asking about the respondent's gender. An additional question appears on the page if the

respondent has provided his/her gender, asking if they have ever used the specific shaving products.

Command Index

Page 110

6.4.1.1 See Also

*MATRIX ... 182

*FORM ...141

Command Index

Page 111

6.5 *BUT
Purpose

Defines a button.

Syntax

*BUT <code> <"text">

Description

With this command you create user-defined buttons which are displayed during the interview. These

buttons can be used instead of or next to answer categories. If you click on the button the relating

code is written.

Arguments

code

This is the code that is stored when pressing the button.

text

This is the button text.

Remarks

• A maximum of five buttons per question is allowed.

• When using buttons on a *FORM question the value of the buttons is stored in the first field of

the form question.

• Allowed in *LANGUAGE section.

• Buttons are not supported on matrixes and blocks.

Example

*TEMPLATE NfieldChicago

*QUESTION 1 *CODES 61 *BUT 5 "Don't know"

How often do you read a newspaper?

1: Daily

2: Once a week

3: Once a month

4: Never

In this example, the category for ‘Don’t know’ is left out of the category list. Instead a button is

defined to enter this answer:

Command Index

Page 112

Result:

Example 2

*TEMPLATE NfieldChicago

*QUESTION 1 *FORM *BUT 99 "Refusal"

Please, fill in your name and address:

1:Name : *ALPHA 73L30

2:Street: *ALPHA 103L40

3:Place : *ALPHA 143L20

Result:

If the Refusal button is used, the code 99 is stored in the first field (Name).

Command Index

Page 113

6.5.1.1 See Also

*USEBUTTONS ..277

Command Index

Page 114

6.6 *CODES
Purpose

Defines a question type.

Syntax

*CODES [pos]L<length>|<pos>

Description

This command is always used in combination with *QUESTION and must be specified after this

command on the same line. It defines a closed question with a set of precoded answer categories,

where each category has a unique value.

Arguments

pos

This is the start of the data field where the data is written in the DAT-file.

length

This is the length of the data field.

In a closed, but not multiple question the number of digits of the highest category number defines

the minimum length of the data field. In a closed, multiple question the highest category number (i.e.

not the number of categories) defines the minimum length of the data field.

Remarks

• It is also possible to define a dummy question by omitting the categories in order to store data

from other questions or variables or to use it as a label.

• The NIPO ODIN Developer reports a warning message when the length is more than the highest

code number requires. The NIPO ODIN Developer reports an error message when a *CODES

question without *MULTI exceeds the maximum size of L10 (max. code number is 2147483647 =

232-1).

Example 1

*QUESTION 1 *CODES 61

Do you own a car?

1: Yes

2: No

In this example, a closed question is defined with two pre-coded answer categories.

Example 2

*QUESTION 2 *CODES 62L25 *MULTI

What brands of cars do you know?

 3: Citroën

 4: Fiat

 5: Ford

 6: Hyundai

 7: Mazda

 8: Mitsubishi

 9: Nissan

10: Opel

11: Peugeot

12: Renault

13: Suzuki

Command Index

Page 115

14: Toyota

15: Volkswagen

16: Volvo

24: Other *NOCON *OPEN

25: Don't know

In this example a closed question with multiple answers is defined. Because the highest code-

number is 25, the field has to be at least 25 positions long. When the interviewer or respondent is

using the keyboard to type the code-numbers, the various codes should be separated by a space,

that is generated automatically when a code number is ‘complete’. So, it is best to skip code 1 when

using code 10 and higher, skip code 2 when using code 20 and higher.

6.6.1.1 See Also

*ALPHA ... 104

*FORM ...141

*MULTI .. 195

*NUMBER ... 201

*OPEN (question type) 203

Command Index

Page 116

6.7 *CONTROL
Purpose

Makes the display of answer codes and labels dependent on answers to a previous question.

Syntax

*CONTROL <Qn|ArrayVariable> <W|N>

Description

This command is always used in combination with *QUESTION, *FORM or *REPEAT and has to be

specified after these commands on the same line. This command controls the display of answer

codes and texts depending on answers to a previous question. This so-called ‘controlling’ question is

referred to by means of Qn.

• When used in combination with *REPEAT, execution of repetition numbers only takes place (or

not) if the numbers correspond with the answer codes mentioned in the controlling question.

• On a *QUESTION, it supports using an array of texts. The text(s) and numbers in the array are

matched against the category texts in the question (in default language), and the related codes

are displayed or hidden.

Arguments

Qn

The reference to the control question where n is the number of the question.
ArrayVariable

An array of texts.

W

Only answer categories that were mentioned at the control question are being displayed.

N

Only answer categories that were not mentioned at the control question are being displayed.

Remarks

• Make sure that the control question and the current question have the same set of answer

categories. Categories that are suppressed as a result of this command, can't be part of the

answer. When all categories are suppressed the question will be skipped.

• W and N are optional because you can also use the *CONTROL command to export the correct

variable names of a question in a *REPEAT.

Example 1

*QUESTION 1 *CODES 61L5 *MULTI

What PC makes do you know?

1: Acer

2: IBM

3: Tulip

4: Other *OPEN

5: Don’t know *NMUL

Command Index

Page 117

*QUESTION 2 *CODES 66L5 *MULTI *CONTROL Q1 N

Which of the following PC makes do you know?

1: Acer

2: IBM

3: Tulip

5: None of these *NMUL *NOCON

In this example, the answers mentioned in question 1 are not displayed in question 2. However, if

Don’t know is selected in question 1, this category is still displayed in question 2, because it is

excluded from the control option by *NOCON.

Example 2

*CONTROL command can also be based on the *CODES label instead of only the *CODES number. To

make this work, use a text array (like the one *GETLQFLIST returns) as an argument. Also, you can

adjust the array size to only receive the X number of least filled levels. Here is an example script:

*TEMPLATE NfieldChicago

*SAMPLEDATA ModelNr

**Use array size 1 to only receive the first of the least filled quotas

*TEXTVARS ModelLevel[1]

*VARS NrOfReturnedModelLevels

*GETLFQLIST NrOfReturnedModelLevels ModelLevel ModelNr

**Use control to show only the labels returned by the GETLFQLIST, in this case only one

*QUESTION 10 *CODES 61L1 *CONTROL ModelLevel W

1:Model1

2:Model2

3:Model3

4:Model4

*END

This script will return the highest level in the least filled quota list.

6.7.1.1 See Also

Least Filled Quota 83

*FORM ...141

*GETLFQLIST ... 145

*NOCON ... 198

*QUESTION .. 220

*REPEAT ... *ENDREP 230

Command Index

Page 118

6.8 *COPY
Purpose

Transfers data within a questionnaire.

Syntax

*COPY <Qn> <Qm|[expression]|"text">

Description

This command is also allowed under condition. Data specified in the second argument will be

transferred to the question specified in the first argument. *COPY is interpreting the contents of

questions to be moved. The original contents of the receiving question, if any, will be replaced.

Arguments

Qn

The question reference of the question where the data will be transferred to (i.e. the receiving field).

Qm

The question reference of the question that will be transferred (i.e. the sending field).

expression

If an expression is given as second argument the result of the expression will be a value. This value

will then be put as data in the receiving question.

text

This text will be transferred literally to the receiving question. It is allowed to refer to a variable in

the text. In that case, the contents of this variable will be embedded in the text and then will be

transferred to the receiving question.

Remarks

• It is recommended to use the same question type for both sending and receiving fields.

• If the data that has to be transferred consists only of digits, NIPO ODIN regards this as a number.

Therefore, to transfer data from a multiple question you have to use *INCLUDE.

• When using the *INCLUDE command to include codes in a single-coded question, the contents

will be set to the highest code. Use the *COPY command to overwrite original contents.

• Contrary to the *INCLUDE command the *COPY command will give warning messages when data

positions are used more than once. Use the *INCLUDE command to suppress these warnings.

• When a question already contains the category that was copied, nothing changes.

Example 1

*QUESTION 1 *CODES 71L2

*COPY Q1 [3]

The contents of Q1 will be 03.

Example 2

*QUESTION 1 *CODES 71L2

*QUESTION 2 *CODES 81

*COPY Q1 Q2

The contents of Q2 are stored in Q1. For example, if Q2 contains 8, the contents of Q1 will be 08.

Command Index

Page 119

6.8.1.1 See Also

*EXCLUDE ... 132

*INCLUDE ... 165

Command Index

Page 120

6.9 *COUNT
Purpose

Counts the number of answers.

Syntax

*COUNT <Qn|numvar> <Qm>

Description

This command is also allowed under condition. The number of answers to the question specified in

the second argument is counted and will be put as a number in the data field or variable specified in

the first argument.

Arguments

Qn

The question reference of the data field where the number is stored.

numvar

The name of the numeric variable where the number is stored. This variable has to be defined earlier

in the questionnaire.

Qm

The question reference from which the number of answers have to be counted.

Remarks

This command is only useful for multiple codes (*MULTI) questions.

Example

*QUESTION 1 *CODES 178L7 *MULTI

What brands of beer do you know?

1: Heineken

2: Amstel

3: Grolsch

4: Carlsberg

5: Tuborg

6: Other *OPEN

7: Don’t know *NMUL

*VARS numb

*COUNT numb Q1

*QUESTION 2 *CODES 185 *IF [Q1,1-6]

So you know *? numb brands of beer?

1: Yes

2: No

In this example, the number of answers on question 1 is counted in the variable numb and used in

the question text of question 2.

Note: With *COUNT none of the arguments can have a variable.

Command Index

Page 121

6.9.1.1 See Also

*ID ... 160

*MULTI .. 195

*VARS ... 286

Command Index

Page 122

6.10 *DATE
System

Nfield CAPI and Nfield Manager.

Purpose

Retrieve the current date and time to be stored in a variable or (dummy) question.

Syntax

*DATE <Qn|var|array>

Description

This command is also allowed under condition. This command stores a date / time stamp in a

(dummy) question or a variable. In Nfield CAPI for Android, the local time of the interviewer mobile

device is stored. In a web preview, the UTC date and time of the interview are stored.

Arguments

<Qn>

A (usually dummy) question that stores the date / time stamp. This question must be an

*ALPHA type question. To store the full return value the length of the *ALPHA field must

be 25 characters. If the length is shorter, the information stored in the question is truncated.

The date is stored in the format "YYYY/MM/DD HHmm:ss +UTC W" (without quotes)

where YYYY is the current year, MM is the current month, DD is the current date, HH is the

current time hour in a 24 hour format, mm is the current time minutes, and ss is the current

time seconds. The value +UTC marks the offset from the UTC (Coordinated Universal

Time) in minutes and is always preceded by a plus or minus sign. Note that the total

number of characters used for the UTC difference is therefore always 4. Last, W is the day

of the week number, where Sunday is 1 and Saturday is 7.

For example, the value "2022/07/15 20:30:18 +060 2" equals to July 15th, 2022

at 20:30 and 18 seconds, 60 minutes (1 hour) later than UTC, and it is a Monday.

<var>

A variable that stores the date / time stamp.
<array>

A numerical array that stores the date / time stamp.

Remarks

• If the variable is a numeric variable (*VARS) only the current year is stored.

• If the variable is a text variable (*TEXTVARS), the date / time stamp is stored in the same

format as when stored in a question (see above).

• If the variable an array of numeric or text values, the components of the date / time stamp

are split across the array elements, as values. To store all values an array of size 8 is

required – smaller arrays would only store components up until the maximum size:

o Array index 1 returns the year,

Command Index

Page 123

o index 2 -- the month,

o index 3 – day,

o index 4 – the hour,

o index 5 – the minutes,

o index 6 – the seconds,

o index 7 – offset to UTC time zone,

o index 8 – day of the week, where 1 is Sunday, 2 is Monday, 3 is Tuesday, 4 is

Wednesday, 5 is Thursday, 6 is Friday, and 7 is Saturday.

• Please note that while Nfield CAPI uses the device’s date and time, the Online surveys always

use the UTC time. The offset will thus always be +000.

Example 1

The following example stores the date / time stamp in an *ALPHA question:

*QUESTION 1 *ALPHA 61L25 *DUMMY

Current date

*DATE Q1

Example 2

This example stores the date/time stamp components in an array variable. The month and day of

week names are retrieved from dummy questions to get friendly names. In the time stamp, values

less than 10 get a leading zero to make sure the time is properly displayed. The UTC time stamp is

formatted in hours rather than minutes and gets a leading plus sign if it is positive.
*VARS Date[8], UTC, DayofWeek, Month

*TEXTVARS DayName, MonthName, sign, LeadZeroH,LeadZeroM

*Q1 *CODES L1 *DUMMY

Weekdays

1:Sunday

2:Monday

3:Tuesday

4:Wednesday

5:Thursday

6:Friday

7:Saturday

*Q2 *CODES L2 *DUMMY

Months

1:January

2:February

3:March

4:April

5:May

6:June

7:July

8:August

9:September

10:October

11:November

12:December

*DATE Date

*PUT Month [Date[2]]

*PUT DayOfWeek [Date[8]]

*PUT MonthName Q2,Month

*PUT DayName Q1,DayOfWeek

*PUT UTC [Date[7]/60]

*IF [UTC>=0] *PUT sign "+"

Command Index

Page 124

*IF [Date[4]<10] *PUT LeadZeroH "0"

*IF [Date[5]<10] *PUT LeadZeroM "0"

*PAGE

Start time of this interview:

*?DayName, *?MonthName *?Date[3] *?Date[1] at *?LeadZeroH*?Date[4]:*?LeadZeroM*?Date[5] (UTC*?sign*?UTC)

6.10.1.1 Please see section below for some date calculation functions:

Date Functions ... 65

Command Index

Page 125

6.11 *DUMMY
Purpose

Specifies a dummy question.

Syntax

*DUMMY

Description

This command specifies a dummy question. Dummy questions are, for example, closed questions

that will be used to extract category texts from. If you do not mark these questions as dummy

questions they would appear on the screen during the interview. *DUMMY prevents the question from

being displayed.

Example

*VARS num

*TEXTVARS txt

*QUESTION 1 *CODES L1

Gender

1: Male

2: Female

*QUESTION 2 *CODES L1 *DUMMY

1: wife

2: husband

*PUT num [Q1]

*PUT txt Q2,num

*QUESTION 3 *CODES L1

Do you have a *?txt?

1: Yes

2: No

In this example, question 2 will not be displayed during the interview. However, the text from this

dummy question is used to display in the third question text.

Command Index

Page 126

6.12 *END
Purpose

Ends the questionnaire or *REPEAT.

Syntax

*END

Description

In general, this command defines the end of the questionnaire or subparts of it. This command is

also allowed under condition. With subparts a physical unconditional end is always required. The

action of this command depends on the context. We distinguish the following:

• Termination of the questionnaire. The interview is marked as a successful interview. All data is

stored to the appropriate files. In the sample table record, if present, the response code for

'successful' is stored.

• Premature termination of a repetition block (*REPEAT). If *END is used within a repetition block,

the repetition will be ended. The current repetition and all not yet executed repetitions, if any,

will not be executed.

Example 1

*QUESTION 1 *CODES 96

Do you own a DVD recorder?

 1: Yes

 2: No *GOTO 99

*QUESTION 2 *CODES 97

Did you use your DVD recorder yesterday?

 1: Yes

 2: No

*QUESTION 3 *CODES 98 *IF [Q2,1]

Did you use it for playback or recording?

 1: Playback

 2: Recording

 3: Both

*QUESTION 98

This was my final question. Thank you for your co-operation.

*END

*QUESTION 99

Then I don’t have any questions for you. Thank you.

*ENDNGB

6.12.1.1 See Also

*ENDNGB.. 128

*ENDST .. 131

*REPEAT ... *ENDREP 230

Command Index

Page 127

Command Index

Page 128

6.13 *ENDNGB
Purpose

Ends a questionnaire.

Syntax

*ENDNGB

Description

Terminates the questionnaire and marks the interview as a screen-out. The data is stored in the

appropriate files. In the sample table record, if present, the response code '19: No success, answers

written' is stored. Interviews with this code are (by default) not counted in the stratification.

Example

*QUESTION 1 *CODES 96

Do you own a VCR?

 1: Yes

 2: No *GOTO 99

*QUESTION 2 *CODES 97

Did you use your VCR yesterday?

 1: Yes

 2: No

*QUESTION 3 *CODES 98 *IF [Q2,1]

Did you use it for playback or recording?

 1: Playback

 2: Recording

 3: Both

*QUESTION 98

This was my final question. Thank you for your co-operation.

*END

*QUESTION 99

Then I don’t have any questions for you. Thank you.

*ENDNGB

6.13.1.1 See Also

*END ... 126

*ENDST .. 131

Command Index

Page 129

6.14 *ENDPAGE
Purpose

A custom redirect page in the questionnaire.

Syntax

*ENDPAGE <responsecode>

text

Description

This is a page where you can route respondents to after the survey completion status is set.

There is no navigation on this page (you cannot move back, etc.). You can configure a

different end page for each response code using *ENDPAGE.

This is especially useful if you want to thank your respondents for taking part in the survey as part of

the script. Before this command was introduced, this had to be done if you wanted to do it as part of

the script before you executed the *END, *ENDST or *ENDNGB commands. This had the risk that your

respondent closed the browser before any of these commands were executed, marking the interview

as a drop-out, instead of a completed interview. By moving this thank you page after these

commands you can make sure they always get executed.

Notes:

1. *ENDPAGE without code is the end page for successful interviews. All not successful

interviews require a specific *ENDPAGE <responsecode> (per corresponding response

code).

2. Respondents will still be redirected if you do not have an *ENDPAGE or if the specific

response code does not have an *ENDPAGE. In other words, ODIN will first check if there is

an *ENDPAGE for a response code, and then, if yes, it will go to that end page. Otherwise, it

will execute the redirect as configured in the Nfield Manager.

3. It does not matter where you declare the *ENDPAGE in the script.

4. This new command has not been implemented in the ODIN Developer yet. It will only work in

Nfield for now.

Arguments

responsecode

Optional response code, the same as in the corresponding *ENDST.

text

Text of the end page.

Command Index

Page 130

Example

*ENDPAGE

Thank you for participation!

*ENDPAGE 21

Sorry, for this survey we need people who own bikes.*

*QUESTION 2 *CODES 62L1

Do you own a bike?

 1: Yes

 2: No *ENDST 21

For more information on the *ENDPAGE command, please see our NIPO Academy #45.

6.14.1.1 See Also

*END ... 126

*ENDST .. 131

*PAGE ... 209

https://www.nipo.com/academy

Command Index

Page 131

6.15 *ENDST
Purpose

Ends a questionnaire and writes a response code.

Syntax

*ENDST <code>

Description

Terminates the questionnaire. In the sample table record, if present, the response code as indicated

is stored. The writing of the data depends on the meaning of the indicated response code.

Arguments

code

The non-response code that has to be stored in the sample table.

Example

*QUESTION 1 *CODES L1

Do you own a car?

 1: Yes

 2: No *ENDST 16

In this example, where only people owning a car should be interviewed, the code for outside target

group is placed in the sample table record.

6.15.1.1 See Also

*END ... 126

*ENDNGB.. 128

Command Index

Page 132

6.16 *EXCLUDE
Purpose

Data manipulation.

Syntax

*EXCLUDE <Qn]|array> <Qm|[expression]|[range >

Description

This command is also allowed under condition. With this command it is possible to remove one or

more answer codes from the receiving data field.

Arguments

Qn

The question reference.
array

The array of questions/labels to remove.

Qm

All the answers of this question.

expression

The result of the expression will represent a code value. Next this code will be removed.

range

You may now also specify more than one code, separated by semicolons, that should be excluded

from the question. Use TO to specify a range.

Remarks

Contrary to *COPY and *INCLUDE, the *EXCLUDE command is used for both single-coded and

multiple questions. When a question did not contain the code that was excluded, nothing changes.

Example 1

*QUESTION 1 *CODES 71L10 *MULTI

*EXCLUDE Q1 [3]

*EXCLUDE Q1 [4]

*EXCLUDE Q1 [5]

*EXCLUDE Q1 [7]

If Q1 contained codes 2, 3, 4, 5, 6 and 7, it would now contain only code 2 and 6.

This can also be specified as:
*EXCLUDE Q1 [3;4;5;7]

or as:

*EXCLUDE Q1 [3 TO 5;7]

Note:

Do not separate codes with commas. Use a range with TO or use semicolons ‘;’ to specify more

than one code.

Command Index

Page 133

Example 2

*QUESTION 1 *CODES 71L10 *MULTI

*QUESTION 2 *CODES 81L10 *MULTI

*EXCLUDE Q1 Q2

If Q1 contains the codes 2, 3, 4 and 7, and Q2 contains codes 2, 7, and 9, Q1 will end up with codes 3

and 4. Question 2 remains unchanged.

Example 3

*QUESTION 1 *CODES 136L7 *MULTI

*EXCLUDE Q1 Q1

This effectively clears all answers in Q1.

6.16.1.1 See Also

*COPY ... 118

*INCLUDE ... 165

Command Index

Page 134

6.17 *FIELD
Purpose

Defines positions of a subroutine, repeat block or matrix.

Syntax

*FIELD [pos]L<length>|<pos>

Description

This command is used with *GOSUB (jump to subroutine), *REPEAT (repetition block) and *MATRIX,

and must be specified after that command on the same line. This command defines data field in the

DAT-file, where the entered answers of the subroutine or repetition block have to be stored.

Positions within the routine or *REPEAT block are relative positions within this block.

Arguments

pos

The start of the data field where the data is written in the DAT-file.

length

The length of the data field.

Remarks

If you're working with unfixed data fields, you don't have to specify this command. Fixing the

questionnaire will place the required *FIELD commands where required.

Example

*TEXTVARS BRAND

*SUBROUTINE BRANDSUB

*QUESTION 2 *CODES 1

What do you think of the quality of *?BRAND ?

1: Very good

2: Good

3: Poor

4: Very poor

5: Don’t know \ no answer

*QUESTION 3 *CODES 2

What do you think of the price of *?BRAND ?

 1: Very expensive

 2: Expensive

 3: Cheap

 4: Very cheap

 5: Don’t know \ no answer

*ENDSUB

*QUESTION 1 *CODES 61L3 *MULTI *SAVE BRAND

Have you ever heard of the following brands of computers?

 1: Acer *GOSUB BRANDSUB *FIELD 64L2

 2: IBM *GOSUB BRANDSUB *FIELD 66L2

 3: Tulip *GOSUB BRANDSUB *FIELD 68L2

Command Index

Page 135

6.17.1.1 See Also

*GOSUB ... 151

*REPEAT ... *ENDREP 230

Command Index

Page 136

6.18 *FONT (definition)
Purpose

Defines a font.

Syntax

*FONT <n> <"size facename|INHERIT [style] [(R G B, R G B)]">

Description

Specifies the size, font typeface name, style and foreground and background colors of a font.

Argument n is used to identify the font when the font is selected. The font description arguments

must be enclosed by double quotes (") and can be specified in any order. Font 0 does not have to be

specified since it is the default font. The default font is the font that is used for every question where

no font is selected. If font 0 is re-defined then the new font definition is used as the default font.

Arguments

n

Positive integer used to identify the font.

size

Point size of the font.

facename

Name of the font. This font must be installed under Windows.
INHERIT

Keyword for inheriting the font of this style sheet.

style

The following styles are available: bold, italic, underline, strikeout. Styles can be combined, they must

be separated by at least one space.

(R G B, R G B)

This argument specifies the foreground and background colors in RGB (Red-Green-Blue) values. R, G,

B are in the range of 0-255 inclusive, where r is the amount of red, g is the amount of green and b is

the amount of blue. If only a foreground color has to be specified this can be done by using (R G

B); If only a background color has to be specified this can be done by: (,R G B).

Black is (0 0 0); white is (255 255 255); red is (255 0 0) et cetera.

Remarks

▪ If a requested font is not installed, Microsoft Windows will choose a font in the same family

of fonts.

▪ *FONT is not recommended to use in Nfield because it always needs a weight (font’s required

size) defined, and that will most likely disturb the display of Nfield on many devices with

different types of screen. By using *FONT you are overruling the carefully set up fonts of the

template.

Command Index

Page 137

Example

*FONT 0 "10 Courier"

*FONT 1 "8 ARIAL"

*FONT 2 "8 ARIAL bold"

*FONT 3 "12 Times New Roman"

*FONT 4 "16 Courier (255 0 0)"

*FONT 5 "18 Roman (,255 0 0)"

*FONT 6 "25 Script (255 0 0, 0 128 255)"

*FONT 7 "10 WingDings "

*FONT 8 "10 ARIAL ITALIC"

*FONT 9 "10 ARIAL BOLD UNDERLINE"

*FONT 10 "10 ARIAL strikeout"

6.18.1.1 See Also

*FONT (switching)..................................... 138

Command Index

Page 138

6.19 *FONT (switching)
Purpose

Switches to an earlier defined font.

Syntax

*FONT <n|[expression]>

Description

Selects an earlier defined font. Can be used as a question option or in question or code texts. The

selected font will remain active until a new font is selected. Every time the screen is cleared, the

current font is set to the default font (*FONT 0) or to the font specified in the question option.

Arguments

n|expression

This is a positive integer or expression that refers to an earlier defined font.

Example 1

*TEMPLATE NfieldChicago

*FONT 0 "18 ARIAL"

*FONT 1 "18 ARIAL BOLD"

*FONT 2 "18 ARIAL ITALIC"

*QUESTION 1 *CODES 61 *FONT 1

Do you use a personal computer?

1: Yes

2: No

*QUESTION 2 *CODES 62 *IF [Q1,1]

Do you use it for *FONT 2business*FONT 0 or *FONT 2personal*FONT 0 purposes?

1: Business

2: Personal

3: Both

Command Index

Page 139

Result:

Example 2

TEMPLATE NfieldChicago

*FONT 0 "12 ARIAL (255 0 0) BOLD"

*FONT 1 "12 ARIAL BOLD"

*FONT 2 "1 ARIAL (0 0 255) BOLD"

*VARS x

*REPEAT 201 *RANDOM

*PUT x [?R-101]

*IF [x<>0] *END

*ENDREP

*PAGE *FONT 1

This randomizer draws a number between -100 and 100

Negative numbers are printed in *FONT 0red*FONT 1

Positive numbers are printed in *FONT 2blue*FONT 1

FONT [2(x>0)]*? x*FONT 1

*END

Command Index

Page 140

6.19.1.1 See Also

*FONT (definition) 136

Command Index

Page 141

6.20 *FORM
Purpose

Defines a form question.

Syntax

*FORM

Description

This command is always used in combination with *QUESTION and must be specified after this

command on the same line. Defines a form question that contains one or more separate input fields

that will be dealt with separately on one and the same screen. These fields will either expect

numbers or alphanumerical texts of limited length as input.

The commands *NUMBER and *ALPHA determine of which type and how long an input level is. In the

form question there may be descriptive texts that generally precede a level definition.

*FORM questions can be controlled by another question by using the *CONTROL command.
*FORM questions can contain *SCALE.

Remarks

• If there is a code in front of the descriptive texts, this code controls in which order the levels are

dealt with during the interview. The level which turn it is will be highlighted. This code is also

used to determine which lines are displayed or suppressed by *CONTROL.

• You can refer to a field in a form question with the expression QnFm, where n is the question

number and m is the field number (i.e. the order in which they were specified: from the left to the

right and then from top to bottom; do not confuse this with the Form level number in front of the

level, that defines the order in which fields are filled when using the <Tab>). For details, see Form

Field References.

Note:

If you refer to a field number that is higher than the number of fields in the form question, the

value of field 1 is returned.

*NUMBER in *FORM question

*NUMBER can be used to define a numerical field in a *FORM question.

Syntax

*NUMBER [pos]L<length>[.fraction]|<pos>

Description

Defines a field that expects a number as an answer. Several fields may be specified in the same

*FORM question.

Arguments

pos

The data field specification where the given answers is stored in the data file with the closed

answers.

Command Index

Page 142

length

The length of the data field. The length of the data field defines the number of digits of the maximum

value of the question. In case of a floating point value, the length of the data field is length+fraction.

fraction

The number of decimals that is allowed to be entered in a floating-point value. The fraction is stored

in the data field without the decimal separator. Which separator (point or comma) is to be used by

the interviewer or respondent depends on the regional configuration settings.

Remarks

• The answer is right-aligned and stored with leading zeros in the answer field.

• The answer can consist of an integer or a floating-point value, as defined in the data field

specification.

• The decimal point in the syntax is never stored in the answer record.

• The maximum value can be set with the *MAX or *RANGE command, but is also limited by the

number of positions in the data field.

• The minimum value can be set with the *MIN or *RANGE command.

• Negative values can only be entered when the *MIN or *RANGE command is defined with a

negative value.

• Negative values are stored with a preceding minus sign in the data file. Note that you require an

extra position in the field definition.

• Positive values are stored without sign.

Example 1

In this example, you can enter four values. The Next button is enabled after all fields are entered and

match the criterion *MAX 100.

*TEMPLATE "NfieldChicago"

*UIRENDER "*NUMBER=Sumslider"

*QUESTION 120 *FORM *UIOPTIONS "instruction=What percentage of your income do you spend on ..."

Let's talk about your monthly budget

1:Rent: *NUMBER 61L4 *NON *MIN [0] *MAX [100]

2:Food: *NUMBER 65L4 *NON *MAX [100]

3:Clothing: *NUMBER 69L4 *NON *MIN [0] *MAX [100]

4:Entertainment: *NUMBER 73L4 *MIN [0] *MAX [100]

5:Total: *NUMBER 77L4 *MIN [100] *MAX [100] *UIOPTIONS "field=total"

*END

Command Index

Page 143

Result:

Example 2

*TEMPLATE "NfieldChicago"

*QUESTION 1 *FORM *BUT 99 "Refusal"

Please, fill in your name and address:

1:Name : *ALPHA 73L30

2:Street: *ALPHA 103L40

3:Place : *ALPHA 143L20

Result:

Example 3

*TEMPLATE "NfieldChicago"

*QUESTION 10 *FORM *UIOPTIONS "instruction=Form with alpha and number fields. (* marks a required field)"

Please share your personal information with us:

Command Index

Page 144

1:First name*: *ALPHA 61L25 *UIOPTIONS "placeholder=First name;characterCount=true"

2:Last name*: *ALPHA 86L25 *UIOPTIONS "placeholder=Last name;characterCount=true"

3:Age*: *NUMBER 111L3 *MIN [0] *MAX [110] *UIOPTIONS "placeholder=Age"

4:Nationality*: *ALPHA 114L50 *UIOPTIONS "placeholder=Nationality"

5:Annual income:*NUMBER 164L6 *NON *UIOPTIONS "placeholder=Annual income"

*END

Result:

6.20.1.1 See Also

*UIOPTIONS ... 270

Command Index

Page 145

6.21 *GETLFQLIST
Purpose

Online surveys only.

Allows script to select a path throughout a questionnaire based on the least-filled quota; offers

selections based on a list ordered by least-filled quota.

For example, if a respondent has experience with more than one brand, we might want to ask

questions about one or more of the brands whose quota are least filled so that these quota levels

are prioritized based on that when trying to fulfill quota.

Syntax

*GETLFQLIST <Nrlevels> <LevelName> <QuotaVar>

Arguments

Nrlevels

Returns the count of quota levels that are not quota full (numeric variable).

LevelName

An array with the quota levels sorted from least filled to most filled.

QuotaVAr

The quota variable name -- the name of the *SAMPLEDATA variable as defined in the questionnaire.

This may either be a single value sample data variable or an array. The sample table column must be

associated with a quota variable.

Remark

Command *GETLFQLIST is only supported in ODIN Developer 5.18 and above.

Usage Notes

*CONTROL <ArrayVariable> <W|N> on a *QUESTION supports using an array of texts. The text(s)

in the array are matched against the category texts in the question, and the related codes are

displayed or hidden.

*SAVE <ArrayVariable> on a *QUESTION will take the selected categories of a question and

save their labels in the indicated variable (clearing the existing contents of the variable) in the order

of answers, up to a maximum as defined by the size of the array.

*ORDER <ArrayVariable> on a *QUESTION displays the categories in the order in which they are

in the array, by label.

The ArrayVariable in these commands can either be a *TEXTVARS array or a *SAMPLEDATA (text)

array. Matching is done case-insensitive.

Notes:

Command Index

Page 146

• Getting the list of least filled quota through the *GETLFQLIST command takes active

interviews into account when max overshoot is enabled. Please note that an interview

only becomes "active" for a quota cell after a *STRAT command has been executed.

• *CONTROL and *ORDER match array texts against the category labels of the Default

language. Likewise, *SAVE stores category labels coming from the category list in the Default

language.

it is important that scripter and researcher ensure that category texts and sample table

contents match.

Example 1 Least Filled Sorting

**Least filled command script

*TEMPLATE NfieldChicago

**Setup vars for least filled

*SAMPLEDATA ModelNr

*TEXTVARS ModelLevel[4]

*VARS NrOfReturnedModelLevels

*GETLFQLIST NrOfReturnedModelLevels ModelLevel ModelNr

**Show the result of the least filled command

**Least filled are sorted on relative fillings based on the minimum quota

*PAGE

LevelsReturned: *?NrOfReturnedModelLevels

Least filled 1: *?ModelLevel[1]

Least filled 2: *?ModelLevel[2]

Least filled 3: *?ModelLevel[3]

Least filled 4: *?ModelLevel[4]

**pick a model and save it to the quota

*QUESTION 10 *CODES 61L1 *SAVE ModelNr ModelChosen

1:Model1

2:Model2

3:Model3

4:Model4

*END

The following quota frame needs to be setup up for an Nfield survey to correspond with this script:

1. Create a variable ModelNr.

2. Add 4 levels for it (Model1-Model4).

3. Define targets for each level.

Next, we need to:

4. Upload a script that will allow us to choose one of the quotas.

5. Publish.

6. Start Fieldwork.

7. Do some interviews for different quotas.

Command Index

Page 147

We can then check in Monitor Fieldwork/Quota how many interviews were already done for each

quota:

In the case above, we can see that Model2 is the least filled quota at this time (only 2 successful

interviews out of the minimum target of 20, so only 10% filled); Model3 is the most filled (4 out of 10 –

40% filled).

If we now upload the Least Filled Script (above), re-publish, and run the live interview, we will see the

levels sorted least to most filled:

Example 2: *ORDER Command with Least Filled Quota

Upload the script below to the same survey:

**Least filled command with ordering

*TEMPLATE NfieldChicago

*SAMPLEDATA ModelNr

*TEXTVARS ModelLevel[4]

Command Index

Page 148

*VARS NrOfReturnedModelLevels

*GETLFQLIST NrOfReturnedModelLevels ModelLevel ModelNr

**Show least filled order using the array returned by the *GETLSTQLIST as the argument for an ORDER command

*QUESTION 10 *CODES 61L1 *ORDER ModelLevel

1:Model1

2:Model2

3:Model3

4:Model4

*END

Publish and run a live interview. We get the same least filled model order as in the previous example,

but now in a question:

Example 3: *CONTROL Command with Least Filled Quota

*CONTROL command can now also be based on the *CODES label instead of only the *CODES number.

To make this work, use a text array (like the one *GETLQFLIST returns) as an argument. Also, you can

adjust the array size to only receive the X number of least filled levels. Here is an example script:

*TEMPLATE NfieldChicago

*SAMPLEDATA ModelNr

**Use array size 1 to only receive the first of the least filled quotas

*TEXTVARS ModelLevel[1]

*VARS NrOfReturnedModelLevels

*GETLFQLIST NrOfReturnedModelLevels ModelLevel ModelNr

**Use control to show only the labels returned by the GETLFQLIST, in this case only one

*QUESTION 10 *CODES 61L1 *CONTROL ModelLevel W

1:Model1

2:Model2

3:Model3

4:Model4

*END

Command Index

Page 149

If you upload and run this script in the same survey, we’ve been using earlier, it will only returns

Model2, which is the highest one in the least filled quota list.

Example 4: Fill the Sample Data with Least Filled Quota, Store in DAT-File

*TEMPLATE NfieldChicago

**set up the vars for the least filled quotas

*SAMPLEDATA ModelNr

*TEXTVARS ModelLevel[4]

*VARS NrOfReturnedModelLevels

**Get the least filled quotas for the quota ModelNr

*GETLFQLIST NrOfReturnedModelLevels ModelLevel ModelNr

**Show the order of the least filled, just to check

*QUESTION 10 *CODES 61L1 *ORDER ModelLevel

Least filled order

1:Model1

2:Model2

3:Model3

4:Model4

**Use the most lacking quota for this interview

*PUT ModelNr [ModelLevel[1]]

** For easy data processing store it also in the Ufile

*QUESTION 11 *CODES 62L1 *DUMMY *VAR ModelUsed

ModelUsed for this interview

1:Model1

2:Model2

3:Model3

4:Model4

** Loop over the models until it matches the nr 1 returned and then store that code in the dummy Q11

*TEXTVARS BrandToCheck

*REPEAT 4

*PUT BrandToCheck Q11, ?R

*IF [BrandToCheck = ModelLevel[1]] *INCLUDE Q11 [?R] *END

*ENDREP

Command Index

Page 150

*END

Notes

Please remember that:

• Least filled quotas are taken over minimum targets.

• Least filled is based on relative fillings.

• List returned is sorted from least filled to most filled.

• If levels are filled equal, they are returned in random order.

• Overshot levels are also returned, ordered from least overshot to most overshot.

6.21.1.1 See Also

Least Filled Quota 83

*CONTROL ...116

*ORDER .. 206

Command Index

Page 151

6.22 *GOSUB
Purpose

Jumps to a subroutine.

Syntax

*GOSUB <name>

Description

Takes care of a jump to a subroutine specified by name. After return from the subroutine the

interview will continue with the next command following *GOSUB. This command is also allowed

under condition.

Arguments

name

The name of the subroutine that is called. This subroutine has to be defined earlier in the

questionnaire.

Remark

If you're working with so-called 'floating' data fields you don't have to specify the *FIELD command.

When fixing the answer fields of the questionnaire it will be put there automatically.

Example 1

*TEXTVARS BRAND

*SUBROUTINE OPINION

*QUESTION 901 *CODES 1

What do you think of the service of *? BRAND?

1: Very good

2: Good

3: Poor

4: Very poor

5: Don’t know \ no answer

*ENDSUB

*QUESTION 1 *CODES 61L5 *MULTI

Which of the following gas stations have you ever visited?

1: Esso *PUT BRAND "Esso" *GOSUB OPINION *FIELD 66L1

2: Shell *PUT BRAND "Shell" *GOSUB OPINION *FIELD 67L1

3: Texaco *PUT BRAND "Texaco" *GOSUB OPINION *FIELD 68L1

4: BP *PUT BRAND "BP" *GOSUB OPINION *FIELD 69L1

5: Mobil *PUT BRAND "Mobil" *GOSUB OPINION *FIELD 70L1

In this example, for each answer mentioned, the subroutine is called - in reverse order that they were

entered in Q1. Data positions are fixed, each subroutine call requires only 1 position, specified in the

*FIELD command. Question 901 is set to position 1 in the field, a relative position within specified

field.

Example 2

*TEXTVARS BRAND

*SUBROUTINE OPINION

*QUESTION 1 *CODES L1

What do you think of the service of *? BRAND?

1: Very good

2: Good

Command Index

Page 152

3: Poor

4: Very poor

5: Don’t know \ no answer

*ENDSUB

*QUESTION 2 *CODES L5 *MULTI

Which of the following gas stations have you ever visited?

1: Esso

2: Shell

3: Texaco

4: BP

5: Mobil

*IF [Q2, 2] *PUT BRAND "Shell" *GOSUB OPINION

*IF [Q2, 3] *PUT BRAND "Texaco" *GOSUB OPINION

In this example, if answer 2 or 3 would be selected, the text of the answer is stored in a variable and

the subroutine is called. Data positions are not fixed, so the *FIELD command is not specified here.

6.22.1.1 See Also

*FIELD ... 134

*SUBROUTINE ... *ENDSUB 260

Command Index

Page 153

6.23 *GOTO
Purpose

Jumps to a question.

Syntax

*GOTO <n|[expression]>

Description

This command can be used on separate line, after a filter expression, on a code of a *CODES

question.

If used on a category it has to be on the same line as the code number definition. If the code is

selected, the interview continues with the question specified. This command can also be used

unconditionally. However, jumping into or out of a subroutine or repetition block is not allowed.

Arguments

n|expression

This is a positive integer or expression that indicates an existing question. Make sure that the

expression always refers to an existing question number, to avoid a run-time error during the

interview, that will terminate the interview in a survey error during fieldwork.

Remark

If you jump back in your NIPO ODIN questionnaire to a question that is specified before the current

position, a the message "Warning: Jump to previous question" appears during a syntax

check in the NIPO ODIN Developer.

• When you jump back to correct or change answers previously entered, consider using the *BACK

command instead of *GOTO. This shows the answers on previous questions that were entered,

but will also automatically clear any answers given on a previous questionnaire routing.

• Rather than jumping to a previous question to create a loop, it is recommended to use a

*REPEAT loop to avoid creating an endless loop and / or problems when exporting questions.

This also avoids issues when an interview is suspended to be followed up later.

When you jump (unconditionally) across some questions, the syntax check in the NIPO ODIN

Developer gives an overview of questions that are never used:
Info: Overview of unused questions:

Info: Question <n> in line <x>

Info: Question <m> in line <y>

Note that NIPO ODIN Developer might consider questions as unused, due to complex filters that

always evaluate to false, but in fact might be true during an interview (for example due to

expressions based on random numbers or the contents of a sample field). Consider rewriting the

filter in a less complex format.

Example 1

*QUESTION 10 *CODES 268

Do you have a driver's license?

1: Yes

2: No *GOTO 26

Command Index

Page 154

Example 2

*QUESTION 10 *CODES 268

Do you have a driver's license?

1: Yes

2: No

*IF [Q10,2] *GOTO 26

In both examples, those with a driver’s license continue with the first question after Q10, the others

go to Q26.

Note: It is not possible to use a variable to refer to question ids or category ids in *GOTO. You can use

the buffer command (*?) if you want to dynamically reference a question. For example:

GOTO {?<VariableContainingValidId>}

6.23.1.1 See Also

*BACK ... 106

*ID ... 160

*IF ... 160

Command Index

Page 155

6.24 *GROUP
Purpose

Keeps categories together.

Syntax

*GROUP

Description

▪ When displaying codes in a question randomly, rotated, you can keep codes together with

the command *GROUP after the first category of a group. All codes up to the next *GROUP are

sorted only mutually.

▪ Use *GROUP on question line to randomize groups inside the question.

Example

*TEMPLATE NfieldChicago

*QUESTION 202 *CODES 61L2 *RANDOM *GROUP *BUT 99 "no answer"

Question text

1: GROUP A code 1

2: GROUP A code 2

3: GROUP A code 3

4: GROUP B code 1 *GROUP

5: GROUP B code 2

6: GROUP B code 3

Result (categories are randomized within each group):

Note: *HEADING/*GROUP command cannot work in combination with *ORDER command.

6.24.1.1 See Also

*RANDOM ... 221

*ROT ... 243

Command Index

Page 156

Command Index

Page 157

6.25 *HEADING
Purpose

Defines a header text above categories.

Syntax

*HEADING <text>

Description

When displaying codes in a question you can define a heading above codes to be used when they are

displayed randomly, rotated. The command *HEADING will be interpreted as an implicit *GROUP on

the next code line.

Arguments

text

A text label identifying the group of codes it precedes.

Example

*TEMPLATE NfieldChicago

*FONT 0 "Arial 10"

*FONT 1 "Arial 10 Italic"

*QUESTION 201 *CODES 61L2 *RANDOM

Question text

*HEADING*FONT 1Header for code 1 to 5*FONT 0

1:code 1

2:code 2

3:code 3

4:code 4

5:code 5

*HEADING*FONT 1Header for code 6 to 10*FONT 0

6:code 6

7:code 7

8:code 8

9:code 9

10:code 10

*HEADING*FONT 1Header for code 11 to 15*FONT 0

11:code 11

12:code 12

13:code 13

14:code 14

15:code 15

98:don't know *NOCON *GROUP

99:no answer

Command Index

Page 158

Result:

Command Index

Page 159

Notes:

1. Please note that if there is a question with *HEADING command which is controlled by
previous question and you have not selected any categories from the last *HEADING group
then you will still see the *HEADING text appearing on the screen.

2. *HEADING/*GROUP command cannot work in combination with *ORDER command.

6.25.1.1 See Also

*GROUP .. 155

*RANDOM ... 221

*ROT ... 243

Command Index

Page 160

6.26 *ID
Purpose

Refer to a question or a code instead of a question number or a code number (respectively). Can also

be used to refer to a page or matrix directly.

Syntax

*ID <text_id>

Argument
text_id

• If placed on a question, page or matrix, it needs to be unique within a script.

• If placed on a codes, it needs to be unique on question level.

• must be a fixed string

o not a variable.
o maybe optionally be surrounded with single- or double-quotes.

• case-insensitive.

• first character must be a letter, remaining characters can be alphanumeric or underscores.

Description

Possibility to add an extra (descriptive) id to ODIN questions and codes; and then use this identifier

in the script and/or reporting instead of question/code numbers.

Can be also used on *PAGE and *MATRIX to directly refer to this *PAGE or *MATRIX for ease of

translation.

Referencing IDs

The ids can be used in all the same places that question number and category code can be used.

The id is surrounded by braces ({ }), so Qnumb becomes Q{Idname}.

For example:

• *GOTO {question_id}

• *PUT result [Q{question_id}]

• *INCLUDE Q2 Q{question_id}

• *COUNT Q{question_id} Q{another_question_id}

• *DATE Q{question_id}

• *QUESTION 1 *CODES 80L3 *MULTI *ORDER Q{question_id}

The Q prefix is required in the same places as when using a question number, for example

in *INCLUDE, but not for *GOTO.

Examples of referencing category ids:

• *PUT result [Q1, {code_one_id}]

Command Index

Page 161

• *PUT result [Q{question_id}, {code_one_id}]

Notes:

• It is not possible to use a variable to refer to question ids or category ids in other

commands, such as *GOTO. You can use the buffer command (*?) if you want to dynamically

reference a question. For example:

GOTO {?<VariableContainingValidId>}

• For *INCLUDE the right (read) argument can have a variable reference, but not the left

(destination) argument. For example, the following is valid:

INCLUDE Q{M3} [Q{? variablewithId}]

• With *COUNT none of the arguments can have a variable.

• The parser will give a warning if some questions in a script have an id, but not all questions

have an id.

• Similarly, if some categories in a question or list have an id, but not all categories in the

same question or list have an id.

• No duplicate ids: the parser will give an error if the same id is used for more than one

question in a script.

• Similarly, if the same id is used for more than one category in a question or list.

• A FORM or the S argument for repeats or matrixes cannot be referenced from a *?.

• The ids will be present in the var file as com alongside QuestionId and CategoryId.

• ID is only fully supported from ODIN Developer version 5.18.032.

• ID is supported from DSC version 2.00.024.

More information

For more information, please watch the NIPO Academy 58.

6.26.1.1 See Also

*? ... 99

*LANGUAGE.. 169

*MATRIX ... 182

*PAGE ... 209

https://nipo.com/webinar/academy-58-new-id-command

Command Index

Page 162

6.27 *IF (condition), *ELSEIF, *ELSE, *ENDIF
Purpose

Creates a condition.

Syntax

*IF <[expression]> <action>

<*ELSEIF <[expression]> <action>>

<*ELSE <[expression]> <action>>

<*ENDIF>

Description

The expression will be interpreted and tested for true or false. If the expression is true the

commands immediately following the expression will be executed. For more information on the

expressions that may be used, see Expressions.

Arguments

expression

A boolean expression with as result true or false.

action

One or more commands that cause an action. Definition commands are not allowed. All these

commands will be executed one after the other till the end of the command line has been reached.

You can use *ENDIF if you want to write your statement across multiple lines.

*ELSEIF terminates the IF block if the condition is met.

Rules:

• The condition expression must be on the same line as the *IF or *ELSEIF commands.

• If the condition is met, the command to execute can be on multiple lines.

• IF block can be nested.

• Each IF block has to be terminated with an *ENDIF command.

Example 1

*IF [Q6 , 1-5] *GOSUB "BRAND"

If Q6 is answered with an answer value between 1 and 5 the subroutine BRAND is called.

Example 2

*IF [RAN 3] *GOTO 100

The generated values for RAN 3 are 0, 1 and 2. Value 0 will make the expression false and thus

prevent the jump. Consequently, in roughly 67% of the cases the interview jumps to question 100.

Example 3

*IF [Q11 = "PC"] *GOTO 100

The condition is true if the answer to question 11 is equal to the text "PC".

Command Index

Page 163

Example 4

*TEXTVARS VarA, VarB, VarC, VarD

*QUESTION 1 *CODES 61L4 *MULTI

Pick a letters

1:A

2:B

3:C

4:D

*IF [Q1,1]

*PUT VarA "Check"

*ELSEIF [Q1,2]

*PUT VarB "Check"

*ELSEIF [Q1,3]

*PUT VarC "Check"

*ELSE

*PUT VarD "Check"

*ENDIF

*PAGE

VarA: *?VarA

VarB: *?VarB

VarC: *?VarC

VarD: *?VarD

You will see that the If block terminates as soon as a condition is met, only one "letter" will ever be

checked, and it will be the first one from those answered in the question.

6.27.1.1 See Also

*GOTO .. 153

*IF (question option) 163

6.28 *IF (question option)
Purpose

Display a question under condition.

Syntax

*IF <[n|expression]> ["text"]

Description

This command is always used in combination with *QUESTION and a question type definition and

must be specified on the same line. This command puts a condition on a question. The question will

only be displayed if the expression is true. For a detailed explanation of expressions, see Expressions

(on page 48).

Command Index

Page 164

Arguments

expression

A boolean expression with as result true or false.

text

Any text. If, when creating variables during an export, the question filters are copied, this text will be

copied in the variable file. In NIPO Diana, this text is placed above the table with straight runs and

cross tabulations.

Example

*QUESTION 15 *CODES 96

Do you own a DVD player?

 1: Yes

 2: No

*QUESTION 16 *CODES 97 *IF [Q15 , 1]

Did you use your DVD player yesterday?

 1: Yes

 2: No

In this example, question 16 will only be asked if the answer to question 15 is code 1.

6.28.1.1 See Also

*IF (condition) ... 162

Command Index

Page 165

6.29 *INCLUDE
Purpose

Transfers data within a questionnaire.

Syntax

*INCLUDE <Qn|array> <Qm|[expression]|[range]>

Description

This command is also allowed under condition. One or more answer codes are combined in the

receiving data field.

Arguments

Qn

The question reference of the data field where the codes must be merged. For more codes to be

inserted in a question, the question must be multiple coded (*CODES *MULTI). On single-coded

questions, the existing code is overwritten with the highest code in the second parameter.

Qm

All codes of this question will be merged in the specified data field. This question may be a single

(*CODES) or a multiple codes question (*CODES *MULTI).

expression

The result of the expression represents a code value. This code is marked in the data field.

range

Specifies a range of more than one code, separated by semicolons, that should be marked in the

question. Use TO to specify a range.

Remarks

• Use the *COPY command to overwrite original contents. Use *EXCLUDE Qn Qn to clear all

answers from a multiple-coded question.

• Contrary to the *COPY command the *INCLUDE command does not give warning messages when

data positions are used more than once, except when the *INCLUDE command is specified

before the actual question definition.

• When copying text or an *ALPHA question into an *ALPHA question, use *COPY rather than

*INCLUDE.

• When a question already contains the codes that were included, nothing changes.

• When including more than one code or including a range in a question that is not *MULTI, only

the last code that was specified is included.

Example 1

*QUESTION 1 *CODES 71L10 *MULTI

*INCLUDE Q1 [3]

*INCLUDE Q1 [4]

*INCLUDE Q1 [5]

*INCLUDE Q1 [7]

The contents of the question will be: 2, 3, 4, 5 and 7. This may also be specified as:
*INCLUDE Q1 [3;4;5;7]

Or as:

Command Index

Page 166

*INCLUDE Q1 [3 TO 5;7]

Note:

Do not separate codes with commas.

Example 2

*QUESTION 1 *CODES 71L10 *MULTI

*QUESTION 2 *CODES 121L8 *MULTI

*INCLUDE Q1 Q2

The answers of Q2 are merged into the answers of Q1. For example, if Q1 contained codes 1 and 4 and

Q2 contains codes 1, 3 and 7, Q1 will contain codes 1, 3, 4 and 7.

Note: For *INCLUDE the right (read) argument can have a variable reference, but not the left

(destination) argument. For example, the following is valid:

INCLUDE Q{M3} [Q{? variablewithId}]

6.29.1.1 See Also

*COPY ... 118

*EXCLUDE ... 132

*ID ... 160

Command Index

Page 167

6.31 *INIT
Purpose

For ONLINE surveys only.

To change the behavior of the resumed interview.

Syntax

*INIT

<ODIN code>

*END

Description

*INIT block is run as is when the interview is resumed.

Remarks

• Only one *INIT block per survey is allowed.

• You cannot jump out of the *INIT block.

• You cannot jump into the *INIT block.

• You cannot have a question with question types in the *INIT block.

• Respondent cannot move back into the *INIT block.

• When resuming an interview (with script that had an *INIT block), respondent cannot move

back to the session that was done before the pause.

• The *INIT block should be defined before the 1st question in the script.

For the detailed explanation and examples of how to use the *INIT block, please see NIPO Academy

30.

https://youtu.be/CAMEZUKkGyg
https://youtu.be/CAMEZUKkGyg

Command Index

Page 168

6.32 *LABEL
Purpose

Defines a text label for the question's export.

Syntax

*LABEL <text>

Description

This command must be specified on a *QUESTION with a question type definition. This command

gives the possibility to attach an export label to a question that replaces the question text. The label

doesn't have to be unique.

Arguments

text

The text that must be used as the question label. The maximum length of a label name is 65

characters. Label names containing spaces must be enclosed by double quotes.

Example

*QUESTION 1 *CODES L1 *VAR Sex *LABEL Gender

Int. type the respondents gender

1:Male

2:Female

*QUESTION 2 *NUMBER L2 *VAR Age *LABEL "Age of respondent"

Could you please tell me your age?

Export result in NIPO Diana / Nvision Script

*Sex *SNG 61L1: Gender

1:Male

2:Female

*Age 62L2: Age of respondent

Export result in IBM SPSS

VARIABLE LABELS

 Sex 'Gender'

 Age 'Age of respondent'

6.32.1.1 See Also

*VAR .. 284

Command Index

Page 169

6.33 *LANGUAGE
Purpose

Defines a code section in a specific language.

Syntax

*LANGUAGE "<name>[,LTR|RTL]"

Description

With this command, you can create one or more sections that contain text in another language than

the default language. The first *LANGUAGE section must start at the end of the script containing the

actual questionnaire logic. A limited number of commands are available in a *LANGUAGE section for

mostly formatting purposes. See further below for details. All other logic must be placed in the main

section.

If a question number is not available in another language, the text from the main section is

displayed. If a question is only available in a translation, it is never displayed. The codes are

displayed as they are specified in the language, so make sure the original code labels and their

translations correspond.

During the interview the interviewer can select the appropriate language, and it is changed using the

*SWILANG command.

The name of the currently active language is contained within the system text variable LANGUAGE.

Arguments

name

This is the name of the language section that NIPO ODIN refers to when a language is selected from

the menu. Language names must be specified between double quotes (for example "Nederlands").

LTR

Indicates language direction Left-to-Right (default).

RTL

Indicates language direction Right-to-Left (Hebrew and Arabic).

Allowed commands

The following commands may be used in a *LANGUAGE section:

• *QUESTION with question number but without type, position, conditions and other options.

• *?

• **

• *BUT (see example 1)

• *FONT (definition)

• *FONT (switching)

• *LIST (definition)

Command Index

Page 170

• *USELIST

• *PICT (question option)

• *PICT (codes option)

• *PAGE (use variables, see example 4)

• *NUMBER (in *FORM question) without position definition or options as place holders

• *ALPHA (in *FORM question) without position definition or options as place holders

• *HEADING

• *MERGE to merge language sections only

Note

If an entry you are trying to translate is missing in the *LANGUAGE section, you can still translate

it by using variables that you fill on the condition of the language (see example 3). In that

example, we do this on the *MATRIX question because the *MATRIX question text has no entry.

In the same way it can also be done for the documents in *SHOWDOCUMENT. To translate pages

and matrixes, you must give them a *ID, so they have a hook in the *LANGUAGE area block.

Example 1

*TEMPLATE "NfieldChicago"

*QUESTION 101 *CODES 61L1

Which language do you prefer?

Welke taal heeft uw voorkeur?

1:English *SWILANG ""

2:Nederlands *SWILANG "Dutch"

*QUESTION 111 *CODES 62L50 *MULTI *BUT 50 "None"

Which fruits do you like?

*USELIST "fruits"

*LIST "fruits"

1:Apple

2:Apricot

3:Avocado

4:Banana

6:Bilberry

7:Blackberry

8:Blackcurrant

9:Blueberry

10:Boysenberry

*LANGUAGE "Dutch"

*QUESTION 111 *BUT 50 "Geen"

Welke fruitsoorten vindt u aantrekkelijk?

*USELIST "fruits"

*LIST "fruits"

1:Appel

2:Abrikoos

3:Avocado

4:Banaan

5:Broodfruit

6:Blauwe bosbes

7:Braam

8:Zwarte bes

Command Index

Page 171

9:Zwarte bosbes

10:Rode bosbes

Example 2

Test questionnaire in three languages

*TEMPLATE "NfieldChicago"

*QUESTION 101 *CODES L1

Which language do you prefer?

Welke taal heeft uw voorkeur?

Welche Sprache bevorzugen Sie?

1:English *SWILANG ""

2:Nederlands *SWILANG "Nederlands"

3:Deutsch *SWILANG "Deutsch"

*QUESTION 1 *CODES L1

question in English

 1: Yes

 2: No

*QUESTION 2 *CODES L1

second question in English

 1: Yes

 2: No

*QUESTION 3 *CODES L1 *IF [Q101,2]

third question only in Dutch

 1: Yes

 2: No

*END

*LANGUAGE "Nederlands"

*QUESTION 1

vraag in het Nederlands

 1: Ja

 2: Nee

*QUESTION 2

tweede vraag in het Nederlands

 1: Ja

 2: Nee

*QUESTION 3

de derde vraag is alleen in het Nederlands

 1: Klopt

 2: niet waar

*LANGUAGE "Deutsch"

*QUESTION 1

Frage auf Deutsch

 1: Ja

 2: Nein

*QUESTION 2

Zweite Frage auf Deutsch

 1: Ja

 2: Nein

Command Index

Page 172

Example 3: Mixed *MATRIX in 2 Languages

*TEMPLATE "NfieldChicago"

*TEXTVARS MatrixText, MatrixInstruction

*QUESTION 101 *CODES L1

Which language do you prefer?

Welke taal heeft uw voorkeur?

1:English *SWILANG ""

2:Nederlands *SWILANG "Nederlands"

*QUESTION 10 *CODES 61L1 *DUMMY

These are the family members that joined you on your trip to Chicago:

1:Father

2:Mother

3:Brother

4:Sister

** Put matrix text and instruction into a *DUMMY question, and then into the variables, so that these texts can be translated, since

cannot use *MATRIX in *LANGUAGE section.

*QUESTION 20 *CODES 62L1 *DUMMY

1:Please carefully check to complete all questions

2:Please enter the following details...

*PUT MatrixText Q20,2

*PUT MatrixInstruction Q20, 1

*MATRIX 4 Q10 *FIELD 63L100 *UIRENDER "Mixed" *UIOPTIONS "instruction=*?MatrixInstruction"

*?MatrixText

*QUESTION 30 *ALPHA 1L20

Name

*QUESTION 40 *NUMBER 21L3 *MIN [18] *MAX [88]

Age

*QUESTION 50 *CODES 24L1 *UIRENDER "Horizontal"

Favorite food

1:Pizza

2:Sushi

3:Hamburgers

4:Taco

5:Curry

*QUESTION 60 *CODES 25L1 *UIRENDER "Select"

Driver's license

1:Yes

2:No

*ENDMATRIX

*END

*LANGUAGE "Nederlands"

*QUESTION 10

Dit zijn de familieleden die zich bij u hebben aangesloten tijdens uw reis naar Chicago:

1:Vader

2:Moeder

3:Broer

4:Zus

*QUESTION 20

1: Controleer zorgvuldig om alle vragen te voltooien

2: Voer de volgende gegevens in ...

Command Index

Page 173

*QUESTION 30

Naam

*QUESTION 40

Leeftijd

*QUESTION 50

Favoriete eten

1:Pizza

2:Sushi

3:Hamburgers

4:Taco

5:Curry

*QUESTION 60

Rijbewijs?

1:Ja

2:Nee

*ENDMATRIX

*END

Example 4 *PAGE with translation

*TEMPLATE "NfieldChicago"

*TEXTVARS PageText

*QUESTION 101 *CODES L1

Which language do you prefer?

Welke taal heeft uw voorkeur?

1:English *SWILANG ""

2:Nederlands *SWILANG "Nederlands"

** Put page text into a *DUMMY question, and then into the variable, so that this text can be translated, since cannot use *PAGE in

*LANGUAGE section.

*QUESTION 20 *CODES 62L1 *DUMMY

1:And now some questions about snacks.

*PUT PageText Q20, 1

*PAGE

*?PageText

*QUESTION 30 *CODES 61

Did you have a snack today?

1: Yes

2: No

*LANGUAGE "Nederlands"

*QUESTION 20

1: En nu enkele vragen over snacks.

*QUESTION 30

Heb je vandaag een snack gehad?

1: Ja

2: Nee

Example 5: *SAMPLEDATA translated

Use PROPERTY to save gender into sample data, rather than *SAVE on the question, to be

independent of the language of the categories.

Command Index

Page 174

*SAMPLEDATA sGender

*QUESTION 101 *CODES L1

Select your gender.

1:male *PROPERTIES "gender=Male"

2:female *PROPERTIES "gender=Female"

*PUT sGender [?PROPERTY(Q101, ansQ101, "gender")]

*LANGUAGE Dutch

*QUESTION 101

Kies uw geslacht.

1:man

2:vrouw

IDs as used in translations

IDs can also be used to translate bits of the questionnaire that are cumbersome to do now without

them. The ID in the main section can be used to add a translation in the language section.

It is also supported for questions.

The following commands now can have a translation using an id:

• Page -- *PAGE *ID "pageId"

• Matrix -- *MATRIX *ID "matrixId"

• Question -- *QUESTION questionNumber *ID "idName"

Page

The text of a *PAGE can be translated as following:

 *PAGE *ID "pageId"

 Esta es una pagina de texto

 *LANGUAGE "Netherlands"

 *PAGE *ID "pageId"

 Dit is een pagina met tekst

Matrix

The text of a *MATRIX (the bit before the questions) can now be translated as following:

*FONT 1 "10 Verdana (255 0 0)"

*VARS text

*QUESTION 10 *CODES 61L1 *DUMMY *ID "my_id"

1:One

2:Two

3:Three

*MATRIX 3 Q{my_id} *ID "mid"

Text

*QUESTION 20 *CODES 1L1 *ID "my_id2"

1:yes

2:no

3:cant remember

*ENDMATRIX

*LANGUAGE "Nederlands"

*MATRIX *ID "mid"

*FONT 1 Tekst *? text

*ENDMATRIX

Command Index

Page 175

Please note there is no support to refer to the matrix in expressions using the {id} syntax.

Question

The text of a question can now also be translated using the id:
*QUESTION 1 *ID "qid"

This is question 1

*LANGUAGE "Nederlands"

*QUESTION *ID "qid"

Dit is vraag 1

6.33.1.1 See Also

*ID ... 160

*MATRIX ... 182

*PROPERTIES ... 214

*SHOWDOCUMENT.................................... 250

*SWILANG .. 262

Command Index

Page 176

6.34 *LIST (definition) and *ENDLIST
Purpose

Defines an answer list.

Syntax

*LIST <n|"name">

Description

• Defines a code list. This command must be specified at the beginning of a line. The code list

consists of all the following lines up to the first new command at the beginning of a line.

• If the list is going to be used with a text question (*ALPHA) there may be a text between square

brackets after the code text, which is used as data to store when the code is selected during the

interview.

• If the list is going to be used with a numerical question (*NUMBER) or a text question(*ALPHA)

the list may contain the same code more than once. This way you can have multiple labels be

coded under the same code value, for example to cover for alternative names, changed brand

names or common spelling errors.

Lists provide a great way to reuse code lists, to condense the questionnaire and to maintain code

lists that are repetitively used throughout the questionnaire.

Arguments

n

A positive integer and is unique within one sub-questionnaire.

name

The name of the list. This name must be unique within one (sub-)questionnaire.

Remarks

• In the list definition a code may be followed by the answer option *NOCON. The use of this

answer option specifies that the specific code always will be displayed when the list is used. With

this option it is for example possible to always display the answer category "Don’t know".

• For each code in the code list and when the list is used in combination with a *CODES question,

the following code options are allowed: *OPEN (codes option), *NOCON, *NMUL, *FONT

(switching), *GROUP and *SWILANG.

• When the list is used in combination with *NUMBER or *ALPHA, only the code option *NOCON is

allowed. The meaning of the option is that this code will not disappear from the list when typing

an answer. All other code options result in a syntax error.

• A blank line at the bottom of the list is considered part of the list and is displayed in the code list

of the question that uses the list.

Example

*LIST 1

 1: Citroën

 2: Fiat

 3: Ford

 4: Hyundai

 5: Mazda

 6: Mitsubishi

Command Index

Page 177

 7: Nissan

 8: Opel

 9: Peugeot

10: Renault

11: Suzuki

12: Toyota

13: Volkswagen

14: Volvo

15: Other *NOCON *OPEN

16: Don’t know *NOCON

*ENDLIST

Syntax

*ENDLIST

Description

Can be used (optionally) to explicitly mark the end of a *LIST definition.

Arguments

None.

Remarks

Lists, like many other ODIN concepts, do not have a well-defined termination token.

Nfield assumes an ODIN command ends where the next ODIN command starts, or at the first line feed.

For the sake of readability, commands are usually separated by empty lines in a script.

In most cases, these empty lines are ignored by Nfield. However, when referring to multiple lists in

a single question, empty lines in a list definition will create an implicit heading, thereby splitting
the merged list into groups. If the merged list is then sorted or randomized, the sort order will
 be applied within each of these groups separately, rather than on the merged list as a whole.

An explicit *ENDLIST command is an easy way to prevent these issues.

Example

The following script:

*TEMPLATE

NfieldChicago

*LIST "Fruits"

1:Banana

2:Dragon fruit

3:Apple

4:Cherry

will generate the following result:

Command Index

Page 178

*LIST "Veggies"

5:Broccoli

6:Aubergine

7:Carrot

*QUESTION 10 *CODES

61L7 *MULTI *SORT

en-us

Which fruits and

veggies have you

eaten in the last 7

days?

*USELIST "Fruits"

*USELIST "Veggies"

Inserting *ENDLIST into the script:

*TEMPLATE

NfieldChicago

*LIST "Fruits"

1:Banana

2:Dragon fruit

3:Apple

4:Cherry

*ENDLIST

*LIST "Veggies"

5:Broccoli

6:Aubergine

7:Carrot

*QUESTION 10 *CODES

61L7 *MULTI *SORT

en-us

Which fruits and

veggies have you

eaten in the last 7

days?

*USELIST "Fruits"

*USELIST "Veggies"

will result in the following:

6.34.1.1 See Also

*LIST (question option)179

*USELIST .. 282

Command Index

Page 179

6.35 *LIST (question option)
Purpose

Uses answer codes from a list.

Syntax

*LIST <n|[expression]|"name">

Description

This command is always used in combination with *QUESTION and a question type definition and

must be specified after these commands on the same line. An earlier defined list of codes will be

used as answer codes for the question. This command may be used in the following three question

types:

• In combination with a *CODES question optionally with *MULTI, the codes and the texts from the

list are used. The answer codes stored in the DAT-file are decided by the code numbers in the

list.

• In combination with a *NUMBER question the answer must be typed. The list of available options

narrows down at each character entered the number, and only code labels with a matching

pattern (both labels starting with or containing the text) are displayed. When finally, one is

selected, the code number belonging to the answer is stored as a number in the DAT-file. The

code numbers are not displayed in a type-ahead list and cannot be entered by the interviewer or

respondent.

n|expression

A positive integer or expression that indicates an existing list. If the expression is a numeric variable

the expression has to be placed between square brackets. If the expression is a text variable, the

expression has to be placed between double quotes.

name

The name of an existing list.

Example 1

*LIST 1

 1: Citroen

 2: Fiat

 3: Ford

 4: Hyundai

 5: Mazda

 6: Mitsubishi

 7: Nissan

 8: Opel

 9: Peugeot

10: Renault

11: Suzuki

12: Toyota

13: Volkswagen

14: Volvo

15: Other *NOCON *OPEN

16: Don’t know *NOCON

*QUESTION 1 *CODES 61L2 *LIST 1

What is the make of your car?

In this example the earlier defined list is used for the answer codes.

Command Index

Page 180

Example 2

*LIST Cars

 1: Citroen

 2: Fiat

 3: Ford

 4: Hyundai

 5: Mazda

 6: Mitsubishi

 7: Nissan

 8: Opel

 9: Peugeot

10: Renault

11: Suzuki

12: Toyota

13: Volkswagen

14: Volvo

*QUESTION 2 *CODES 63L17 *MULTI

What brands of cars do you know?

*USELIST Cars

16: Other #1 *OPEN

17: Other #2 *OPEN

18: Don’t know any brand *GOTO 9999

Example 3

*LIST Cars2

01: Alfa Romeo

02: B.M.W.

02: BMW

03: Citroen

04: Fiat

05: Ford

06: Hyundai

07: Mazda

08: Mitsubishi

09: Nissan

10: Opel

11: Peugeot

12: Renault

13: Rolls Royce

14: Suzuki

15: Toyota

16: Volkswagen

16: VW

17: Volvo

18: Other *NOCON

19: Don’t know

*TEXTVARS lname

*PUT lname "Cars2"

*QUESTION 3 *NUMBER 81L2 *LIST "*? lname"

What is the make of your car?

In this example, the list displayed is determined by a text variable and therefore the name must be

placed between double quotes (") when you refer to it in the question.

The "Other" code is always displayed because it contains the *NOCON command.

Command Index

Page 181

6.35.1.1 See Also

*LIST (definition) 176

*USELIST .. 282

Command Index

Page 182

6.36 *MATRIX
Purpose

Matrix questions are combined questions. They are another way we can collect more data, while

displaying less screens as well as improving the interviewer/interviewing experience. Matrix

questions are very easy to set up. You begin your matrix with the command *MATRIX and you end

with *ENDMATRIX. Similar to using *BLOCK but the behavior is different.

Syntax

*MATRIX n Qn [W|N] [*FIELD <pos>L<length>] [*ROT|*RANDOM|*ORDER] Question

text

<any question type including all the options that a question can have.

Excluding buttons, nested matrix, form question, multiple questions on a page

type block.>

*ENDMATRIX

Description

Create multiple questions on a page in the form of a matrix or transposed matrix.

Arguments

n This is a positive value indicating the

number of statements (rows) in the matrix.

Qn Codes question containing the statements.

Default all statements will be included to

be shown.

W Optional: only answers mentioned in Qn

will be displayed

N Optional: only answers not mentioned in

Qn will be displayed.

*FIELD <pos>L<length> Defines the data positions.

*ROT|*RANDOM|*ORDER Defines the order in which the statements

are to be shown.

Expression Operator for Matrix

S Refers to the

statement in a

Matrix

QxSn Answer of question

x for the nth

statement

A list will contain definitions and no answers we refer to a question and not a list. We need a

parameter to specify how many statements there are, so we can determine the data positions

correctly.

Command Index

Page 183

Note: *NOCON or *NMUL will have no effect inside the *MATRIX. If you need to exempt a statement

from the randomization inside *MATRIX, you need to use the *ORDER command.

Example 1 Single Matrix

The list of statements is formed from the categories’ text fields of Qn. The column headers are

formed by the question text and categories’ text of the questions residing within a Matrix block. In

other words, the Parent column header will be equal to the text of the question and the Child column

headers will be made up of the categories’ text of that question.

*TEMPLATE "NfieldChicago"

*QUESTION 10 *CODES 61L2 *DUMMY

1:Millennium Park ** category text becomes the 1st statement

2:Art Institute ** category text becomes the 2nd statement, etc.

3:Michigan Avenue and the Magnificent Mile

4:Navy Pier

5:Wrigley Field

6:Shakespeare Theater

7:Museum of Science and Industry

8:Field Museum of Natural History

9:Lyric Opera

10:Willis Tower SkyDeck

*MATRIX 10 Q10 *FIELD 63L10

We picked 10 highlights of Chicago. Please rate them. ** this becomes the header

*QUESTION 20 *CODES 1L1

1:Strongly agree ** category text becomes the answer box column header

2:Agree ** category text becomes the answer box column header, etc.

3:Undecided

Command Index

Page 184

4:Disagree

5:Strongly disagree

*ENDMATRIX

*END

Example 2 Mixed Matrix

*TEMPLATE "NfieldChicago"

*TEXTVARS Othermovie

*LIST "movies"

1: Godfather I ** category text becomes the 1st statement

2: Turkish Fruit ** category text becomes the 2nd statement

3: Titanic ** category text becomes the 3rd statement

*QUESTION 1 *CODES 61L4 *MULTI

Which of these movies would you like to watch?

*USELIST "movies"

4: Other *OPEN *SAVE Othermovie ** open answer becomes the 4th statement

*QUESTION 901 *CODES L4 *MULTI *DUMMY

*USELIST "movies"

4: *?Othermovie

*INCLUDE Q901 Q1

*UIRENDER "*CODES=Horizontal" ** all the CODES questions will be rendered horizontal

*MATRIX 4 Q901 W *FIELD 65L48 *UIRENDER “Mixed”

Which of these have you seen already? ** this becomes the main header

*QUESTION 2 *CODES L1

Seen ** this becomes the column header

1: yes ** category text becomes the answer box column header

2: no ** category text becomes the answer box column header

*QUESTION 3 *CODES L1 *IF[Q2, 1]

Please rate them ** this becomes the second column header

1: Very Bad - 1 ** category text becomes the answer box column header

2: 2 ** category text becomes the answer box column header

3: 3 ** category text becomes the answer box column header

4: 4 - Very Good ** category text becomes the answer box column header

*ENDMATRIX

*UIRENDER "*CODES=" ** to reset the CODES questions back to original

** Using the expression operator

*QUESTION 5 *OPEN 100L1 *IF[Q1, 1 & Q2S1, 2]

** will only ask this question if Godfather I was not watched but mentioned as one of the movies that the interviewer would like to

watch

Why did have you not watched the Godfather I?

This is what question 1 looks like:

Command Index

Page 185

And this is the Matrix:

Command Index

Page 186

Example 3 Multiple Choice Matrix

*TEMPLATE "NfieldChicago"

*QUESTION 10 *CODES 61L1 *DUMMY

List of attractions.

1:Chicago History Museum

2:Brookfield Zoo

3:Grant Park

4:360 Chicago

5:Water Tower Place shopping center

*MATRIX 5 Q10 *FIELD 62L25 *UIOPTIONS "instruction=Please rate all statements"

There is a lot to do during the day and night, but what do you think of...

*QUESTION 320 *CODES 1L5 *MULTI

1:Interesting

2:Fun

3:Expensive

4:Must see

5:N/A *NMUL

*ENDMATRIX

*END

Example 4 Using expression operator for *MATRIX to refer to a statement inside the loop

*VARS LoopCounter

*REPEAT 5

*PUT LoopCounter [?R]

*QUESTION 1 *CODES L1

Answer for loop*?LoopCounter

1:First Answer

2:Second Answer

*ENDREP

*QUESTION 2 *CODES L1 *IF [Q1S2,1]

Under condition

1:ok

Command Index

Page 187

In this example, we are referencing the question inside the loop (Question 1) outside the loop (in

Question 2). We want to show Question 2 only if we got an answer 1 (“First Answer”) to

Question 1 during the second time the loop was run. The way we can do it is by using the S

(expression operator for *MATRIX). So Q1S2 means the answer to Q1 given during the second run of

the loop.

Example 5 Using expression operator for *MATRIX to refer to a statement inside the *MATRIX

This is example is similar to example 4, but here we are showing Question 2 only if the respondent

chooses option 1 (Interesting) of the second matrix row (Brookfield Zoo).

*TEMPLATE "NfieldChicago"

*QUESTION 10 *CODES 61L1 *DUMMY

List of attractions.

1:Chicago History Museum

2:Brookfield Zoo

3:Grant Park

4:360 Chicago

5:Water Tower Place shopping center

*MATRIX 5 Q10 *FIELD 62L25 *UIOPTIONS "instruction=Please rate all statements"

There is a lot to do during the day and night, but what do you think of...

*QUESTION 320 *CODES 1L5 *MULTI

1:Interesting

2:Fun

3:Expensive

4:Must see

5:N/A *NMUL

*ENDMATRIX

*QUESTION 2 *CODES L1 *IF [Q320S2,1]

Under condition

1:ok

*END

6.36.1.1 See Also

*BLOCK ... 108

*ID ... 160

*ORDER .. 206

*REPEAT ... *ENDREP 230

Command Index

Page 188

6.37 *MAX
Purpose

Sets a maximum.

Syntax

*MAX <n|[expression]>

Description

This command is always used in combination with *QUESTION and must be specified after the

question type definition on the same line.

• In combination with *CODES *MULTI it defines the maximum number of answers allowed.

• In combination with *NUMBER it defines the maximum value that may be entered.

Arguments

n|expression

This is a positive integer or expression that gives the maximum answer value.

Example 1

*QUESTION 91 *NUMBER L2 *MAX 65

What is your age?

(Maximum is 65)

*QUESTION 92 *CODES L1

Do you smoke?

 1: Yes

 2: No

*QUESTION 93 *NUMBER L2 *MAX [Q91]

At what age did you start smoking?

(Maximum is current age)

Example 2

*QUESTION 1 *NUMBER L1

How many cars do you have?

*QUESTION 2 *CODES L16 *MULTI *MAX [Q1] *IF [Q1>=1]

What brand(s) of car(s) do you have

(Maximum as many brands as you have cars)

 1: Citroen

 2: Fiat

 3: Ford

 4: Hyundai

 5: Mazda

 6: Mitsubishi

 7: Nissan

 8: Opel

 9: Peugeot

10: Renault

11: Suzuki

12: Toyota

13: Volkswagen

14: Volvo

15: Other *NOCON *OPEN

16: Don’t know *NMUL

In this example, no more answers can be given than the number of cars mentioned in Q1.

Command Index

Page 189

6.37.1.1 See Also

*MIN.. 193

*MULTI .. 195

*NUMBER ... 201

*RANGE... 226

Command Index

Page 190

6.38 *MERGE
Purpose

Inserts a script fragment into questionnaire.

Syntax

*MERGE {position} {FragmentFilename}

Description

The specified script fragment is inserted on the place of this command. *MERGE cannot be used in a

questionnaire that is already merged itself.

Arguments

position

The start position with which all fixed data fields in the merged questionnaire will be raised.

FragmentFilename

Name of the questionnaire fragment file that is to be merged.

Remarks

• Upload the fragment file before questionnaire. The fragment file can only be uploaded via public

API:

POST /v1/Surveys/:SurveyId/ScriptFragments/:FragmentName

After the fragment upload, you can upload the ODIN script with the fragment reference using the

Nfield Manager or the public API.

• Fragment name is case sensitive

• The questionnaire to be merged must have fixed data fields (from position 1, instead of 61).

• No start position can be defined if the questionnaire is to be merged in a language section.

• The *MERGE command cannot be used conditionally as it is evaluated when the questionnaire is

loaded into memory.

• You can set up the folder location for file fragments in ODIN Developer, Settings/Options:

Command Index

Page 191

• Font definitions can also be put into a separate files to be merged.

Example 1

Let’s say we have this file fragment:

File: Fruitlist

*LIST “fruits”

1: Apple

2: Apricot

3: Avocado

4: Banana

6: Bilberry

7: Blackberry

….

We need to upload this file to Nfield.

In our questionnaire we merge this file and can use the list from it:

*MERGE Fruitlist

*QUESTION 9003 *CODES L3

What is your favorite fruit?

**Can now refer to the list defined in the script fragment

*USELIST “fruits”

Note: The *MERGE command can be used inside translations, for instance, in the example above you

could have *MERGE FruitListNL inside the *LANGUAGE Dutch, and *MERGE FruitListEN inside

*LANGUAGE English parts. So you would have to have 2 different list files for the 2 languages.

Command Index

Page 192

6.38.1.1 See also

An NIPO Academy video on how to manage long lists: https://youtu.be/l3zzhhQD9EI

https://youtu.be/l3zzhhQD9EI

Command Index

Page 193

6.39 *MIN
Purpose

Sets a minimum.

Syntax

*MIN <n|[expression]>

Description

This command is always used in combination with *QUESTION and must be specified after the

question type definition on the same line.

• In combination with *CODES *MULTI it defines the minimum number of answers allowed.

• In combination with *NUMBER it defines the minimum value that must be entered.

Arguments

n|expression

A positive integer or expression that gives the minimum answer value or the initial length or position.

Example 1

*QUESTION 91 *NUMBER L2 *MIN 18 *MAX 65

What is your age?

(Minimum is 18, maximum is 65)

*QUESTION 101 *NUMBER L4 *MIN [-999]

What was the gross profit for your company last year?

(Type the profit in Millions, if the company made a loss, use negative numbers)

Example 2

*QUESTION 1 *CODES L18 *MULTI *MIN 3

What are your three favorite car brand(s)?

(Minimum 3 brands)

 1: Citroen

 2: Fiat

 3: Ford

 4: Hyundai

 5: Mazda

 6: Mitsubishi

 7: Nissan

 8: Opel

 9: Peugeot

10: Renault

11: Suzuki

12: Toyota

13: Volkswagen

14: Volvo

15: Other #1 *OPEN

16: Other #2 *OPEN

17: Other #3 *OPEN

18: Don’t know *NOCON *NMUL

Command Index

Page 194

6.39.1.1 See Also

*MAX ... 188

*MULTI .. 195

*NUMBER ... 201

*RANGE... 226

Command Index

Page 195

6.40 *MULTI
Purpose

Specifies a question as a multiple coded question.

Syntax

*MULTI [[pos]L<length>|<pos>]

Description

Specifies a question as a multiple coded question. This command may be used in combination with a

closed question or an open question and must be specified after these commands on the same line.

The length of the data field specification for *CODES has to be at least as long as the highest code

value in the set of presented codes. The answers are stored as a string of 0 and 1 values in the data

file with the closed answers. Here answer code n corresponds with the nth position in the string. A 1

on that position means that the answer was given.

• If *MULTI is used in combination with *OPEN, the question will be regarded as a multiple answer

question when coding open answers.

• It is also possible to use *MULTI without *CODES, but then the additional parameter for the

position length per item must be included (see Example 2 below).

Arguments

pos

An optional data field specification where the order of the mentions is stored in the data file with the

closed answers.

length

Stores the order of mentioned (the order in which the user picked the codes during the interview).

This has to be as long as the number of picked codes to be saved, multiplied by the number of digits

for the highest code. If the length is shorter codes will be truncated. For example, if highest code is

12, and you need to store the first 3 order of mentioned (the first 3 answers the respondent

mentioned), you need the length of: 2 (the number of digits in 12) multiplied by 3 = 6.

Remarks

To specify a maximum number of answers to be mentioned, use *MAX. Similarly, to specify a

minimum number of answers to be mentioned, use *MIN.

Example 1

*QUESTION 1 *CODES 61L10 *MULTI 71L6

What PC makes do you know?

 1: Acer

 2: Compaq

 3: Dell

Command Index

Page 196

 4: Hewlett Packard

 5: IBM

 6: Philips

 9: Other *OPEN

10: Don’t know *NMUL

In this example, all mentions are stored in position 61L10. The order of the first three answers

mentioned is stored in position 71L6. For instance, if the categories 5, 1, 6 and 4 are mentioned,

position 71L2 will hold the value 05, position 73L2 will hold the value 01 and position 75L2 will hold

the value 06.

Example 2

*QUESTION 1 *MULTI L12 2

Which of the following colors do you like?

 1: Red

 2: Green

 3: Purple

 4: Orange

 5: Blue

 6: Aquamarine

 10: None *NMUL

In this example we use *MULTI without *CODES, but with the additional parameter for the position

length per item (2).

6.40.1.1 See Also

*CODES ..114

*NMUL ...197

*OPEN (question type) 203

Command Index

Page 197

6.41 *NMUL
Purpose

Specifies that the code in question cannot be given as answer in combination with other codes.

Syntax

*NMUL

Description

This command is always used after a code definition and must be specified behind this code on the

same line. Specifies that the code can not be given as answer in combination with other codes.

Remarks

This command is only effective for questions that allow multiple answers.

Example

*QUESTION 1 *CODES 61L10 *MULTI

What PC makes do you know?

 1: Acer

 2: AST

 3: Compaq

 4: Dell

 5: Hewlett Packard

 6: IBM

 7: Philips

 8: Tulip

 9: Other *OPEN

10: Don’t know *NMUL

In this example, selecting code 10 will automatically de-select other codes and vice versa.

Command Index

Page 198

6.42 *NOCON
Purpose

Specifies that the code in a question doesn't come under control.

Syntax

*NOCON

Description

This command is always used behind a code definition and must be specified after this code on the

same line. If the codes of the current question are displayed under control by means of *CONTROL

then this code is ignored and always displayed. This command is also used for the question options

*RANDOM and *ROT. It excludes all codes starting from the code that have *NOCON as option from

randomization, inversion and rotation, respectively.

If used in combination with *LIST and *NUMBER or *ALPHA the code is always displayed regardless

of the text entered as the narrowed-down search.

Example

*QUESTION 1 *CODES 61L10 *MULTI

What PC brands do you know?

(Unaided awareness)

 1: Acer

 2: AST

 3: Compaq

 4: Dell

 5: Hewlett Packard

 6: IBM

 7: Philips

 8: Tulip

 9: Other *OPEN

10: Don’t know any makes*NMUL

*QUESTION 2 *CODES 71L10 *MULTI *CONTROL Q1 N

Which of the following PC makes do you know?

(Aided awareness)

 1: Acer

 2: AST

 3: Compaq

 4: Dell

 5: Hewlett Packard

 6: IBM

 7: Philips

 8: Tulip

10: None of the above *NMUL *NOCON

In this example, code 10 in question 2 is always displayed, even when it is mentioned in question 1.

Command Index

Page 199

6.42.1.1 See Also

*CONTROL ...116

*LIST (definition) 176

*RANDOM ... 221

*ROT ... 243

Command Index

Page 200

6.43 *NON
Purpose

Permits non-response.

Syntax

*NON

Description

This command can be specified on any *QUESTION or on a *ALPHA or a *NUMBER. Non-response is

permitted at this question or field. It is permitted to press ENTER or OK without giving an answer.

Example

*QUESTION 1 *NUMBER 61L4 *NON

What is your postcode?

In this example, it is possible to press ENTER or OK without filling in the postcode.

6.43.1.1 See Also

*ALPHA ... 104

*FORM ...141

*NUMBER ... 201

*QUESTION .. 220

Command Index

Page 201

6.44 *NUMBER
Purpose

Defines a numerical question.

Syntax

*NUMBER [pos]L<length>[.fraction]|<pos>

Description

This command is always used in combination with *QUESTION and must be specified behind this

command on the same line. Defines a question as a numerical question and expects a number as an

answer.

Arguments

pos

The data field specification where the given answers is stored in the data file with the closed

answers.

length

The length of the data field. The length of the data field defines the number of digits of the maximum

value of the question. In case of a floating point value, the length of the data field is length+fraction.

fraction

The number of decimals that is allowed to be entered in a floating-point value. The fraction is stored

in the data field without the decimal separator. Which separator (point or comma) is to be used by

the interviewer or respondent depends on the regional configuration settings.

Remarks

• The answer is right-aligned and stored with leading zeros in the answer field.

• The answer can consist of an integer or a floating-point value, as defined in the data field

specification.

• The decimal point in the syntax is never stored in the answer record.

• The maximum value can be set with the *MAX or *RANGE command, but is also limited by the

number of positions in the data field.

• The minimum value can be set with the *MIN or *RANGE command.

• Negative values can only be entered when the *MIN or *RANGE command is defined with a

negative value.

• Negative values are stored with a preceding minus sign in the data file. Note that you may

require an extra position in the field definition.

• Positive values are stored without sign.

Example

*QUESTION 1 *NUMBER 61L3.2 *MAX 100

What percentage of your income do you spend on clothing?

In this example, you can enter a value with two decimals, for instance 60.75. In the data field 06075 is

stored in 5 positions.

Command Index

Page 202

6.44.1.1 See Also

*ALPHA ... 104

*CODES ..114

*LIST (question option)179

*MAX ... 188

*MIN.. 193

*OPEN (question type) 203

*RANGE... 226

Command Index

Page 203

6.45 *OPEN (question type)
Purpose

Defines an open question.

Syntax

*OPEN [pos]L<length>|<pos>

Description

This command is always used in combination with *QUESTION and must be specified after this

command on the same line. It defines a question as an open question that expects an alpha-

numerical answer. This open answer can be of virtually unlimited length. The answer is stored in a

separate data file for open answers (survey.o). Although the answers are not stored in the data file

(DAT-file) with the closed answers, you must reserve data positions in the DAT-file. It is

recommended but not required to reserve positions that will be used for merging the coded open-

ended answers.

Arguments

pos

The start of the data field reserved in the DAT-file. This position is also be used as identification to

match O-file open-ended answers with a DAT-file data position, to enable coding open answers.

length

The length of the data field.

Remarks

• A text box appears in which you can type the complete answer.

• Optionally the command *MULTI may be added. This has no influence on the interviewing

process. When coding open answers the question will be treated as a multiple-coded answer

question.

Example 1

*QUESTION 1 *OPEN 61 *NON

Do you have comment or remarks regarding this questionnaire?

In this example, you can enter any text. This text is stored in the O-file. No codes are stored in the

DAT-file, so the related data field (61) remains empty. It is however used to reserve some space for

coding open-ended answer. Because of the *NON command, it is also possible not to enter anything

in which case no open ended answer are stored.

Example 2

*QUESTION 2 *OPEN 62L100 *MULTI *BUT 100 "No suggestions"

Do you have any suggestions on how to improve this product?

In this example, you can enter any text. This text is stored in the O-file. The positions reserve space to

code open-ended answers afterwards (maximum 100 categories, multiple). If the button No

suggestions is pressed, no open answer is stored, but code 100 is marked in the data file.

Command Index

Page 204

6.45.1.1 See Also

*ALPHA ... 104

*CODES ..114

*NUMBER ... 201

*OPEN (codes option).............................. 205

*REC .. 228

Command Index

Page 205

6.46 *OPEN (codes option)
Purpose

Specifies a code as an open code.

Syntax

*OPEN

Description

This command is always used after a code definition and must be specified after this code on the

same line. Specifies a code as open code and expects, if the code is part of the answer, a literal

answer that can be of virtually unlimited length. The entered answer is stored in a separate data file

for open answers (survey.o).

Remarks

• A text box appears in which you can type the complete answer.

• This codes option is not allowed for code 0 in single-coded questions.

Example

*QUESTION 1 *CODES L1

Do you live in Amsterdam or somewhere else?

1: Yes, in Amsterdam

2: No, somewhere else *OPEN

In this example, if answer 2 is selected a location can be entered. This text is stored in the O-file,

while the code (2) is stored in the DAT-file.

6.46.1.1 See Also

*CODES ..114

*OPEN (question type) 203

Command Index

Page 206

6.47 *ORDER
Purpose

Set the order of codes in a code list or the order of execution in a *REPEAT loop or matrix.

Syntax

*ORDER <var | QnM | QnR>

Description

You can define the order of codes in a *CODES question and the order of a *REPEAT loop according

to the contents of an array variable or the order of mentions of another question.

• Both variable names and questions with order specifier (QnM or QnR) may be used in the *ORDER

command.

• *ORDER may be used in a *REPEAT, *QUESTION or *MATRIX statement.

• Invalid orders in the argument with *ORDER are ignored. This means if an order number is used

twice or if an index in the variable is empty, all remaining code are displayed in regular

ascending order.

• *ORDER cannot be used together with *FORM, *RANDOM or *ROT.

• The order of mentions in a question are available through QnMi where n is the question number

and i is the index of the mention.

• The display order of a random-question is available through QnRi, where n is the question

number and i is the index of the random order.

• The operators QnM and QnR are available, independent of whether the order is saved or not.

• A syntax check produces a warning message if the variables M or R are defined. If these variable

names are used, the operator QnMi and QnRi are not available.

• The items in a *REPEAT block or code list which are not in the *ORDER command, are displayed

in the order as if there was no *CONTROL command. This means that if you only want to show the

items mentioned in a previous *CODES question in the order they were mentioned, you have to

use both a *ORDER and a *CONTROL command.

• *ORDER <ArrayVariable> on a *QUESTION displays the categories in the order in which they

are in the array, by label.

Arguments

var

This is a variable name of an array variable (*VARS name[n]). The values in this variable set the

order in which the codes are displayed or the order in which the *REPEAT loop is processed.

QnM

This is order of mentions of a previous *MULTI question.

QnR

This is the order in which a previous question with *RANDOM or *ROT was displayed.

Example 1

*QUESTION 1 *CODES 61L5 *MULTI 66L4

Which brands do you know?

Command Index

Page 207

(Int. do NOT help!

 Type the answers in the same order as given by the respondent)

1: brand A

2: brand B

3: brand C

4: brand D

5: None of these *NMUL *NOCON

*QUESTION 2 *CODES 71L5 *MULTI 76L4 *CONTROL Q1 W *ORDER Q1M

Which brand do you use most often

(Brands are presented in the order that was entered in Q1)

1: brand A

2: brand B

3: brand C

4: brand D

5: None of these *NMUL *NOCON

Example 2: *ORDER Command with Least Filled Quota

Show quota levels in order of least filled using the array returned by the *GETLSTQLIST as the

argument for an *ORDER command.

**Least filled command with ordering

*TEMPLATE NfieldChicago

*SAMPLEDATA ModelNr

*TEXTVARS ModelLevel[4]

*VARS NrOfReturnedModelLevels

*GETLFQLIST NrOfReturnedModelLevels ModelLevel ModelNr

**Show least filled order using the array returned by the *GETLFQLIST as the argument for an ORDER command

*QUESTION 10 *CODES 61L1 *ORDER ModelLevel

1:Model1

2:Model2

3:Model3

4:Model4

*END

Command Index

Page 208

Note: *HEADING/*GROUP command cannot work in combination with *ORDER command.

6.47.1.1 See Also

Least Filled Quota 83

*CODES ..114

*FORM ...141

*GETLFQLIST ... 145

*RANDOM ... 221

*REPEAT ... *ENDREP 230

*ROT ... 243

Command Index

Page 209

6.48 *PAGE
Purpose

Defines a page of text.

Syntax

*PAGE

Description

Defines a page of text. This command should be at the beginning of a line or under condition using

*IF. The text consists of all following lines up to the first new command that is at the beginning of a

line, excluding **, *? and *FONT (switching). During the interview this text is displayed. To proceed

only ENTER or OK need to be pressed. The text usually contains an explanation for the next question

or questions.

Example 1

*PAGE

And now some questions about snacks.

*QUESTION 1 *CODES 61

Did you have a snack today?

1: Yes

2: No

In this example, a short introduction to the next (set of) question(s) is displayed.

Example 2

*IF [TMP = 1] *PAGE This text will appear on a separate page

After an *IF statement, you may immediately specify an *PAGE with text.

6.48.1.1 See Also

*ID ... 160

*QUESTION .. 220

Command Index

Page 210

6.49 *PICT (question option)
Purpose

Displays a picture or allows user to play an audio file.

Syntax

*PICT <filename>

Description

Displays a picture or allows user to play an audio file on the screen. The *PICT command may also

be used in combination with *PAGE.

Pictures in the following formats may be used:

• BMP

• JPG (normal and progressive encoding)

• MP3

• PNG

If MP3 format is used, a PLAY button is displayed, so the user can play that audio file.

Arguments

filename

The file name of the image that must be displayed. This file should first be uploaded to Nfield survey.

Note that screen resolution for respondents or interviewer workstations might vary. Always create a

picture in the lowest resolution that is used for optimum results.

Example

*TEMPLATE NfieldChicago

*q1

Is this

*PICT question.jpg

a question?

This example displays a question with the picture question.jpg.

Command Index

Page 211

Result

6.49.1.1 See Also

*PAGE ... 209

*PICT (codes option) 212

Command Index

Page 212

6.50 *PICT (codes option)
Purpose

Displays a picture on a code.

Syntax

*PICT <filename>

Description

This command is always used on a code definition and must be specified after this code on the same

line. A picture is identified by the file name. The picture file must be uploaded to the survey first.

Example

*TEMPLATE NfieldChicago

*QUESTION 10 *CODES 61L9 *MULTI *UIOPTIONS "columns=2"

What did you have this morning for breakfast?

1:*PICT "banana.png"Banana

2:*PICT "kiwi.png"Kiwi

3:*PICT "orange.png"Orange

4:*PICT "pear.png"Pear

5:*PICT "strawberry.png"Strawberry

6:*PICT "boterham.jpg"Sandwich

7:*PICT "smoothy.jpg"Smoothy

8:*PICT "muesli.jpg"Cereal

9:None of the above *NMUL

*END

Command Index

Page 213

Result

Note: Accessibility options for pictures are regulated by the template used. For example,

NfieldChicago template does offer accessibility options for pictures. Please see NfieldChicago

documentation for more information.

6.50.1.1 See Also

*PICT (question option) 210

https://nfieldchicago.nfieldmr.com/accessibility/text-for-images/index.html
https://nfieldchicago.nfieldmr.com/accessibility/text-for-images/index.html

Command Index

Page 214

6.51 *PROPERTIES

Purpose

Used to define the custom (user) defined properties at various levels (question/categories)

in ODIN script. There properties can be defined at questions, category, and lists.

Syntax

*PROPERTIES "{[key]=[value]}{;[key]=[value]}{;...}"

Description

Properties consist of one or more key/value pairs, separated by a semi‐colon. Nfield

considers ‘fixed key/value pair’, which means the property names and their values

cannot be variables and replaced with other variables or values. For example – in a multi-

county setup, it is not possible to control a global brand list with one custom property by

changing its values at run time.

Remarks

• Properties cannot be defined in *LANGUAGE sections, only on questions and categories in

the default language section.

• Filtering on the key name is case-insensitive. Values of properties are case-sensitive.

• Custom properties are useful way of defining and storing user specific information at

question/categories/list level. This feature has high potential and use in automation where

information/resources are picked up based on request/user input from global

setup/repository. They are also useful in driving variable content in the script.

• Properties can be used to filter the categories shown in questions with the *USELIST

command.

• A built-in function has to be called for fetching values of custom properties. This function
needs few compulsory arguments. Below describes how it should be used in ODIN script –

o ?property(Q[question number],[category number],"key")

o property() is a function to fetch the custom prop values. It cannot be used
without passing arguments.

o Q[question number] is a question from which custom prop value it to be fetched.

o [category number]is a category name (response index) which will be fetched
from the above-mentioned question. This is numeric index passed with categories.
The category number can also be an expression.

o Key is a name of custom property value of which is to be fetched in.

Command Index

Page 215

Example 1

*TEXTVARS moodtype

*PUT moodtype [?property(Q1, Answer, “Feeling”)]

Since it is a function, it returns property value as text type which is to be stored into text variable

before use. You can directly use the function as per your needs. The function can also be used as

expression under conditional statements.

Example 2

*IF [?property(Q1, Answer, “mood”) = “Bored”]

Example 3

Filtering a question based on custom property defined in other question
*VARS Answer

*QUESTION 1 *CODES 61L1 *PROPERTIES “segment=hotel” *SAVE Answer

How will you rate the service during your stay at hotel Marriot?

1: Very Good *PROPERTIES “emotion=Positive;mood=Happy”

2: Good *PROPERTIES “emotion=Positive;mood=Happy”

3: Average *PROPERTIES “emotion= Negative;mood=Bored”

4: Bad *PROPERTIES “emotion=Negative;mood=Bored”

*QUESTION 2 *OPEN 62L1 *IF [?property(Q1, Answer, “mood”) = “Bored”]

What was that which made you feel bored?

Here Question 1 is about rating the overall service at hotel Marriot. The answer (index)

is saved in a variable (Answer) which was later used in property() to fetch the value

of custom property mood.

Next question (Q2), is filtered on custom property mood and asked only if respondents

have felt bored (i.e. value of custom property mood).

Example 4

Summarizing (netting) the responses of one question into other dummy (summary) variable at back

of script.
*VARS Answer, propval

*QUESTION 1 *CODES 61L2 *SAVE Answer

Please enter region you live in.

1: Schleswig-Holstein *PROPERTIES “DE_Reg=1”

2: Hamburg *PROPERTIES “DE_Reg=1”

3: Niedersachsen *PROPERTIES “DE_Reg=1” 4: Bremen *PROPERTIES

“DE_Reg=1”

5: Nordrhein-Westfalen *PROPERTIES “DE_Reg=2”

6: Hessen *PROPERTIES “DE_Reg=3”

7: Rheinland-Pfalz *PROPERTIES “DE_Reg=3”

8: Saarland *PROPERTIES “DE_Reg=3” 9: Baden-Wurttemberg

*PROPERTIES “DE_Reg=3”

10: Bayern *PROPERTIES “DE_Reg=3”

11: Berlin *PROPERTIES “DE_Reg=4”

12: Mecklenburg-Vorpommern *PROPERTIES “DE_Reg=4”

13: Sachsen-Anhalt *PROPERTIES “DE_Reg=4” 14: Brandenburg

*PROPERTIES “DE_Reg=4”

15: Thuringen *PROPERTIES “DE_Reg=4”

16: Sachsen *PROPERTIES “DE_Reg=4”

Command Index

Page 216

*QUESTION 2 *CODES 63L1 *DUMMY

1: North

2: West

3: South

4: East

*PUT propval [?PROPERTY(Q1, Answer, “DE_Reg”)]

*COPY Q2 [propval]

*PAGE

propval = *? propval

Answer = *? Answer

Here Question 1 (region) is asked from respondent, and zone at question 2 is back-

coded using custom properties defined at Question 1.

There could be many ways of implementing it using custom properties; this is just one way

to fulfill the requirement of summarizing regions into zones.

Example 5

Use in multi-language projects the property for the data in the sample rather than the category text
for quota control purposes.
*SAMPLEDATA sGender

*VARS ansQ102

*QUESTION 102 *CODES L1 *SAVE ansQ102

Select your gender.

1: male *PROPERTIES "gender=Male"

2: female *PROPERTIES "gender=Female"

*PUT sGender [?PROPERTY(Q102, ansQ102, "gender")]

*LANGUAGE Dutch

*QUESTION 102

Kies uw geslacht.

1: man

2: vrouw

6.51.1.1 See Also

*USELIST .. 282

Command Index

Page 217

6.52 *PUT
Purpose

Puts data in variable.

Syntax

*PUT <var> <"text" | [value] | Qn | Qn,code | [expression] >

Description

Replaces the contents of a variable by data indicated in the second argument. This command is also

allowed under condition. You can transfer the contents of a numeric variable to a text variable and

vice versa.

When transferring the contents of a text variable to a numeric variable the text variable must contain

a value. The following rules apply:

• Any fractions are transferred as well.

• The transfer stops at the first non-numerical character.

• If the first character is not numeral the result value is 0.

• When transferring the contents of a numeric variable to a text variable, it is rounded to the next

integer, unless another format is specified with the string manipulation commands.

Arguments

var

This is an earlier defined variable, which receives the data.

text

Direct text enclosed in quotes (single or double) with eventually embedded contents of a variable. If

quotes are to be displayed in the text use the other quotes to embed the text.

value

A value enclosed in square brackets.

Qn

The answer to the question will be used as data (Note: it will not work if Qn is an *OPEN question. So,

an open question should not be used here).

Qn,code

The code of a question is used as data. In a text variable the descriptive text of the code is used.

Qn,var

A code of question n is used as data. This code is defined in the variable var. In a text variable the

descriptive text of the code is used, rather than the code number.

Qn,?R

A category of question n will be used as data. This code is defined by the repetition number. In a text

variable the descriptive text of the code is used, rather than the code number.

expression

The result of the expression is stored in the variable.

Command Index

Page 218

Remarks

• A text value may range several lines. All lines up until the closing of the quotes are considered

part of the text. Line-feeds are also considered part of the text. If a closing quote is missing for a

command, an error occurs during the syntax check.

• A text may not contain NIPO ODIN commands other than the *? and *FONT (switching) directives.

Sample table

If a *SAMPLEDATA variable is used, the last value stored in the variable is stored in the sample table

when the interview ends (either definitely or indefinitely).

Example 1

*VARS age

*QUESTION 1 *NUMBER 61L2

How old are you?

*PUT age Q1

In this example, the answer of question 1 is stored in the variable age.

Example 2

*TEXTVARS paper

*QUESTION 2 *CODES 61L7 *MULTI

Which of the following newspapers do you know?

1: La Repubblica

2: La Stanza

3: The Mirror

4: The New York Times

5: Le Figaro

6: La Libération

7: None *NMUL

*REPEAT 6

*IF [Q2,?R] *ELSE *GOTO 4

*PUT paper Q2,?R

*QUESTION 3 *CODES 1

How often do you read *?paper?

1: Daily

2: Once a week

3: Once a month

4: Don’t know

*QUESTION 4

*ENDREP

Example 3

*TEXTVARS sex

*QUESTION 7 *CODES 91

Gender?

1: Man *PUT sex "Men"

2: Woman *PUT sex "Women"

Example 4

*SAMPLEDATA Gender

*QUESTION 7 *CODES 91

Gender?

1: Man

2: Woman

Command Index

Page 219

*PUT Gender [Q7]

The value 1 or 2 is stored in the Gender field in the sample table (requires the field to exist).

6.52.1.1 See Also

*? ... 99

*SAMPLEDATA ... 246

*TEXTVARS ... 268

*VARS ... 286

Command Index

Page 220

6.53 *QUESTION
Purpose

Defines a question.

Syntax

*QUESTION <n>|X

or

*Q <n>|X

Description

Defines a question with question number n. This command has to be at the beginning of a line.

The question consists of all lines up to the first command that is at the beginning of a line (excluding

for **, *?, *FONT and *PICT). After the command *QUESTION (or *Q) there are often more

commands on the same line. These commands on the question line define the specific conditions

and options when answering this question.

Arguments

n

A positive number that indicates the question number. Question numbers are made up of positive

numbers (>= 1). No alphabetic or other characters are allowed (except for X, see below). Each

question number has to be unique within the (sub-) questionnaire. You may use any question

number in the range 1 to 2147483647 in any order - the order of the questionnaire is not set by the

question numbers. The NIPO ODIN Developer allows you to renumber question numbers if necessary.

X

A placeholder value to be filled with a question number automatically later, by renumbering the

questionnaire. It is not possible to set routing or filtering for placeholder question numbers.

Remarks

Questions without question text and codes are considered dummy questions and are skipped during

execution.

Example 1

*QUESTION 1 *CODES L1

Int. type Gender of respondent.

 1: Male

 2: Female

*QUESTION 2 *NUMBER L2

What is your age?

*QUESTION 9999

These were all the questions. Thank you very much for your co-operation.

*END

In this example Question 1 is a precoded question, Question 2 is a numeric question and Question

9999 is a question without type, where only ENTER is required to continue.

Example 2

*QUESTION 11 *CODES L1

Command Index

Page 221

*QUESTION 12 *NUMBER L2

What is your age ?

*IF [Q12 <= 24] *COPY Q11 [1]

*IF [Q12 >= 25 & Q12 < 35] *COPY Q11 [2]

*IF [Q12 >= 35 & Q12 < 45] *COPY Q11 [3]

*IF [Q12 >= 45 & Q12 < 55] *COPY Q11 [4]

*IF [Q12 >= 55 & Q12 < 65] *COPY Q11 [5]

*IF [Q12 >= 65] *COPY Q11 [6]

In this example Question 11 is a dummy question, but is created to be able to store the age in 6

distinct codes.

6.53.1.1 See Also

*ALPHA ... 104

*CODES ..114

*FORM ...141

*NUMBER ... 201

*OPEN (question type) 203

*PAGE ... 209

Command Index

Page 222

6.55 *QUOTA

Purpose

Allows the quota in the Nfield Manager to be created automatically once the script with this

command is uploaded and writes the answer to the question to the relevant *SAMPLEDATA variables.

Syntax

*QUOTA <sample_data_variable>

Description

It will write the answer to the question to the relevant *SAMPLEDATA variables, and will also create

the quota definitions for these variables.

Arguments

sample_data_variable

Sample data variable name, which will also be the used to create the quota variable name.

Remarks

In the example script below, you can see that the *QUOTA command has been used on Q1, Q3 and Q4.
Just as *SAVE, it will write the answers to the question to the relevant *SAMPLEDATA variables. But it
will do more: it will also create the quota definitions for these variables.
For example, the command on Q1 will create a quota variable named Gender with levels named
'male', 'female' and 'Rather not say'. It will also take into account if a question has
the *MULTI option and will then set the quota variable as a multi, provided the sample data variable
has been defined as an array.

• The command cannot be used to create nesting quotas, nor can you set targets using it. Both
of these will still have to be done manually through the Nfield Manager or though the public
API.

• Unlike *SAVE, *QUOTA command is also executed when the *INCLUDE command is
targeting the related question. This makes question 3 still count towards quota, even though
it is a dummy question.

• The *QUOTA command will make Nfield Manager create a new quota definition or overwrite
the existing one for each upload of the questionnaire script, unless the existing quota frame
contains nesting quotas and/or any targets. As soon as the quota frame on a survey contains
nesting quotas or targets it is locked, and cannot be changed through script upload any
more. Removing targets and nesting will unlock the frame again.

• *QUOTA always writes the label of the default language to the quota frame.

• Support for the quota command is not available in the Odin Developer yet. It will be included
in the next release.

Example 1

*TEMPLATE NfieldChicago

*SAMPLEDATA Gender, Age, Aided_Brandlist[10]

*QUESTION 1 *CODES 61L1 *ID Gender *QUOTA Gender

Gender?

1:male

Command Index

Page 223

2:female

3:Rather not say

*QUESTION 2 *number 62L3 *ID AgeNumber

How old (or young) are you?

*QUESTION 3 *CODES 65L1 *ID Agebrackets *QUOTA Age *DUMMY

1:0-17 *ID Bracket_0_17

2:18-40 *ID Bracket_18_40

3:41-65 *ID Bracket_41_65

4:66+ *ID Bracket_66_inf

*IF [Q{AgeNumber} < 18] *INCLUDE Q{Agebrackets}[{Bracket_0_17}]

*IF [Q{AgeNumber} > 17 & Q{AgeNumber} < 41] *INCLUDE Q{Agebrackets}[{Bracket_18_40}]

*IF [Q{AgeNumber} > 40 & Q{AgeNumber} < 66] *INCLUDE Q{Agebrackets}[{Bracket_41_65}]

*IF [Q{AgeNumber} > 65] *INCLUDE Q{Agebrackets}[{Bracket_66_inf}]

*QUESTION 4 *CODES 66L10 *MULTI *ID Aided_Awareness *QUOTA Aided_Brandlist

Do you know any of the below brands, even if by name only?

1:Brand-A

2:Brand-B

3:Brand-C

4:Brand-D

5:Brand-E

6:Brand-F

7:Brand-G

8:Brand-H

9:Brand-I

10:Brand-J

For more information, please watch NIPO Academy 51a.

6.55.1.1 See Also

Quota ... 67

https://nipo.com/webinar/academy-51a-quota-in-nfield-the-basics-quota-command

Command Index

Page 224

6.56 *RANDOM
Purpose

Randomizes answer codes, repetitions or matrix statements.

Syntax

*RANDOM

Description

This command can be used in combination with *QUESTION, *REPEAT and *MATRIX and must be

specified after these commands on the same line. The codes and the descriptions of a question are

shown in random order on the screen. Repetitions are executed in random order.

Arguments

pos

The data field specification where the used order is stored in the data file with the closed answers.

length

The length of the data field.

Remarks

If you use *RANDOM on a question the following applies:

• The number of codes of which the order is saved depends on the index variable used. To store

the entire order, make sure that your index variable matches the number of codes used.

• With *NOCON answer codes can be excluded from the randomization. *NOCON excludes all

remaining answer codes starting from the first answer code where it is specified.

• Also, with *STOPRANDOM answer codes can be excluded from the randomization. Similarly, to

*NOCON, STOPRANDOM excludes all remaining answer codes starting from the first answer code

where it is specified.

Example

*QUESTION 1 *CODES 61L10 *MULTI *RANDOM

What PC makes do you know?

 1: Acer

 2: AST

 3: Compaq

 4: Dell

 5: Hewlett Packard

 6: IBM

 7: Philips

 8: Tulip

 9: Other *OPEN *NOCON

10: Don’t know *NMUL

In this example, all mentions are stored in position 61L10. The last two codes are not randomized

along and will be displayed always at the bottom of the list.

Command Index

Page 225

6.56.1.1 See Also

*FORM ...141

*GROUP .. 155

*NOCON ... 198

*ORDER .. 206

*REPEAT ... *ENDREP 230

*ROT ... 243

*STOPRANDOM.. 252

Command Index

Page 226

6.57 *RANGE
Purpose

Specifies a value range for numerical questions.

Syntax

*RANGE <[n1|expression [TO n2|expression]]>[;n3 [TO n4];...]

Description

This command specifies a range for numerical questions and numerical fields in a *FORM question.

You can specify a start value and an end value for the range by separating the two values with the

keyword TO. Multiple values can be separated by a semicolon (;). Instead of a value, an expression

may also be used.

Remarks

You can only use an incremental range (1 TO 5 rather than 5 TO 1).

A semicolon must be used to separate two ranges. When using a comma, the system interprets this as

a column-code reference.

The argument TO must be used to separate the extremes within a range. The dash (-) is interpreted

as a minus sign and should not be used.

Arguments

n1

The start value of the range.

n2

The end value of the range.

expression

An expression of which the result will be used as the start or end value.

Example 1

*QUESTION 1 *NUMBER L2 *RANGE [18 TO 70 ; 99]

How old are you?

Int.: enter "99" for no answer.

In this example, the answer can be in the range of 18 to 70 and 99.

Example 2

*QUESTION 1 *NUMBER L3 *RANGE [-10 TO -1 ; 1 TO 10]

Specify a number in the ranges of -10 to -1 or 1 to 10.

In this example, the answer can be in the range of -10 to -1 and 1 to 10.

Example 3

*VARS x,y

*PUT x [-3]

*PUT y [3]

*QUESTION 1 *NUMBER L2 *RANGE [x TO y]

Specify a number in the ranges of *?x to *?y.

In this example, the answer can be in the range of -3 to 3.

Command Index

Page 227

6.57.1.1 See Also

*MAX ... 188

*MIN.. 193

*NUMBER ... 201

Command Index

Page 228

6.58 *REC
System

Nfield CAPI surveys only

Purpose

Silently records (parts of) interviews.

Syntax

*REC [[pos]L<length>|<pos>] ["Filename"] [::DELETE::] [::NOSAVE::] [QId]

Description

With this command it is possible to record parts of an interview or even the whole interview. This

command can be used at:

• The beginning of a line. When used at the beginning of a line a data field must be specified. This

data field is used to storing the answers after coding. Specifying *REC at the beginning of a line

using a data field specification starts recording; specifying *REC without a data field

specification ends recording. Recording also automatically stops at the end of the script.

Recorded answers are saved to the mp3 files.

"Filename"

Arguments

pos

This is the start of the data field where the data is written in the DAT-file.

length

This is the length of the data field.

::DELETE::

Deletes the current recording and all future recordings of the ongoing interview (it makes recording

for the ongoing interview impossible, which is what is needed if the permission from the respondent

to record the interview has not been granted). For more information on how it is done, please see

section Silent Recording.

::NOSAVE::

Does not save the current recording.

QId

Question ID to map the silent recording in the Quality Control section with the question. It should be

used at the start of the silent recording. This option is only available for CAPI surveys. For more

information on how to use this, please visit the CAPI course, section Quality Control/Quality Control

Page.

Example 1

*QUESTION 1 *CODES 648

We would like to record your answers. Do you agree?

1: Yes

2: No *GOTO 2

https://elearning.easygenerator.com/06bf7987-1ff7-4096-9c16-7bb409f5d854

Command Index

Page 229

*REC 649L20

*QUESTION 2

Recording of the interview starts here.

Example 2

*REC 648L20

*QUESTION 1 *CODES 668

Do you own a dog?

1: Yes

2: No

*QUESTION 2 *OPEN 669 *IF [Q1 , 1]

What is the name of your dog?

*QUESTION 3 *CODES 670

Do you own a cat?

1: Yes

2: No

*REC

*QUESTION 4

This question is no longer recorded.

In this example, the answers on questions 1, 2 and 3 will be recorded and saved in the mp3 file.

6.58.1.1 See Also

SILENT RECORDING 341

Command Index

Page 230

6.59 *REPEAT ... *ENDREP
Purpose

Start repetition block.

Syntax

*REPEAT n

<commands>

*ENDREP

Description

Defines the start of a repetition block. This command has to be on the beginning of a line. This

command is always used in combination with *ENDREP (end repetition block). A repetition block

consists of a set of commands and questions that are considered to be a special component. When a

repetition block is executed in the questionnaire, the system executes all commands within the

repetition block as many times as is indicated by n. The answer fields within the repetition block are

considered relative positions to the data field. When a repetition block is executed, the system uses

the starting position defined by *FIELD on the *REPEAT statement as the starting point to

determine where the answers have to be stored. For every repetition the answer fields belonging to

the commands in the repetition block are stored in fixed fields one after another. It is possible to

refer to the repetition number with the ?R operator.

Arguments

n

This is a positive integer that gives the number of repetitions.

Remarks

• You cannot jump out of a repetition block with the *GOTO command. To terminate a repetition

block, the *END command can be used.

• Jumping from outside the repetition block into a question within a repetition block with the

*GOTO command is not possible.

• The repeat numbers in repeat blocks can be controlled by *CONTROL, randomized by *RANDOM,

rotated by *ROT, and ordered by *ORDER.

• To refer to an answer of question x for the nth run of the loop from outside the loop, you can use

the expression QxSn (see example 3).

Example 1

*TEXTVARS paper

*QUESTION 2 *CODES 61L7 *MULTI

Which of the following newspapers do you know?

1: La Repubblica

2: La Stanza

3: The Mirror

4: The New York Times

5: Le Figaro

6: La Libération

7: None *NMUL

Command Index

Page 231

*REPEAT 6 *FIELD 68L6

*PUT paper Q2,?R

*QUESTION 3 *CODES 1 *IF [Q2,?R]

How often do you read *?paper?

1: Daily

2: Once a week

3: Once a month

4: Don’t know

*ENDREP

In this example, question 3 is repeated 6 times. Only for those newspapers mentioned in Q2 the

question is displayed.

Example 2

*TEXTVARS paper

*QUESTION 2 *CODES 61L7 *MULTI

Which of the following newspapers do you know?

1: La Repubblica

2: La Stanza

3: The Mirror

4: The New York Times

5: Le Figaro

6: La Libération

7: None *NMUL

*REPEAT 6 *FIELD 68L6 *CONTROL Q2 W

*PUT paper Q2,?R

*QUESTION 3 *CODES 1

How often do you read *?paper?

1: Daily

2: Once a week

3: Once a month

4: Don’t know

*ENDREP

This example is the same as the previous, but now the *IF statement has been replaced with a

*CONTROL statement to the same effect.

Example 3

*VARS LoopCounter

*REPEAT 5

*PUT LoopCounter [?R]

*QUESTION 1 *CODES L1

Answer for loop*?LoopCounter

1:First Answer

2:Second Answer

*ENDREP

*QUESTION 2 *CODES L1 *IF [Q1S2,1]

Under condition

1:ok

In this example, we are referencing the question inside the loop (Question 1) outside the loop (in

Question 2). We want to show Question 2 only if we got an answer 1 (“First Answer”) to

Command Index

Page 232

Question 1 during the second time the loop was run. The way we can do it is by using the S

(expression operator, also used in *MATRIX). So Q1S2 means the answer to Q1 given during the

second run of the loop.

Please note that in a *REPEAT the same question is used multiple times, which implies that there are

multiple instances of the same question id. If you refer to a question used in a *REPEAT inside that

*REPEAT, it will refer to question in the current iteration of that *REPEAT. Referring to a question

used in a repeat outside of the *REPEAT will result in undefined result.

6.59.1.1 See Also

Repeat Number .. 45

*CONTROL ...116

*END ... 126

*FIELD ... 134

*MATRIX ... 182

*ORDER .. 206

*RANDOM ... 221

*ROT ... 243

Command Index

Page 233

6.60 *REQUEST
Purpose

Online surveys only.

To perform a HTTP request without any restrictions, including a strict response model.

Syntax

*REQUEST <ResultCode> <Result> <RequestName>

Arguments

ResultCode

A variable to put the result in. Result codes can be one of the following:

ResultCode Description

1 A success status code.

-1 Timeout, the API did not respond within the time limit of 5 seconds

-2
You forgot to add a request configuration.

-5
The response was not a success code. If any content is returned, it

will be in the Content property of the result.

-6
An exception occurred during the request. If any content is

returned, it will be in the Content property of the result.

-7
An unknown error has occurred. If any content is returned, it will be

in the Content property of the result.

Result

A result variable to put the http response content in, this must be a textvar.

RequestName

The name of the request configuration. Before we can use the *REQUEST we have to configure

headers, http method, endpoint, etc. This is done using the Request configuration object.

In the configuration you can define variables to be passed through the script. These variables are

placed between brackets {}, and will be replaced with the content of that variable when executed.

You can use variable in the URI or the body, but not in the headers.

Below a snippet of ODIN script that populates that SearchTerm variable, and then performs a request.

Command Index

Page 234

The request has a template like this:

{"SearchTerm": "{SearchTerm}"}

The request in ODIN script:

*VARS RequestResult

*TEXTVARS SearchTerm, RequestResponse

*PUT SearchTerm 'Odin is awesome'

*REQUEST RequestResult RequestResponse 'RequestName'

And the payload will be send to the endpoint will be

{

 "SearchTerm": "Odin is awesome"

}

The response will be saved in RequestResponse. This can be anything you want. The content can also

be a string, a number, or a GUID.

Configure the request

Before using *REQUEST, we need to configure some things for it: headers, http method, endpoint, etc.

This done using the Request configuration object which can be setup through the Nfield UI.

As a Domain Administrator, Power User, or Local Domain Manager it is possible to create API Request

configurations that scripters will be able to use in their ODIN scripts with

the *REQUEST command. This is done on the APIs tab by (1) clicking on the New Request button, and

following the steps below:

Command Index

Page 235

• The Name is mandatory, and must be unique (per domain), and not be

longer than 16 characters.

• The Uri is mandatory and cannot be longer than 1024 characters.

• The HelpUri cannot be longer than 1024 characters.

• The Description cannot be longer than 4096 characters.

• There are no limitations on the Header Name or Value properties.

 ene on i tion

 e e on i tion

Command Index

Page 236

After configuring the endpoint, please always make sure to test it:

 A on i tion

 e t e on i tion

Command Index

Page 237

An example

We will create a request that will allow scripters to get a current IP address of the Nfield

server (note that Nfield servers do not use static IP addresses. They have dynamic ones, so

they will not be the same every time).

In the Nfield Manager, on the APIs page, click on New Request, then enter the following

URI for a GET https://api.ipify.org/?format=jason

 e tin t e en point

Command Index

Page 238

Name should be the same as we will use in the script. In our example it is ThisIPAdr.

For the optional description, please enter: “This gets current IP address of the Nfield server.”

Then click on the orange save icon.

We now have a request that we can test by clicking on the Send button. This will return

the current IP address of the Nfield server you are on. This is the result in my case:

The value you will see will of course be different. Please save that value somewhere since

we will use it later in this example.

Let’s make another request. It’s called IPDetails. Click on the New Request button again,

and enter the following into the GET URI: https://ipinfo.io/{ThisIPAdr}/geo ThisIPAdr is

a variable in the script that will be filled by the script with the IP address that we want to

get the details from.

https://ipinfo.io/%7bThisIPAdr%7d/geo

Command Index

Page 239

The name used in the script is IPDetails. In the optional description you can put: “Gets the

IP address of the {ThisIPAdr}”.

Save it.

To test this request we need to supply an IP address value to get details from. So click on

the Test Values, then on Add Test Value, and enter ThisIPAdr, and then a valid IP address

(for example, the one you saved when testing ThisIPAdr request):

Click on Send, and that will get the details of this IP address. Here is what I got:

Command Index

Page 240

Let us now use these requests in a script.

We will now create a new survey (for example, an Online survey called NfieldServer) and upload the

following script to it:

*TEMPLATE NfieldChicago

*VARS RequestResult, IpLength

*TEXTVARS ThisIPAdr, IPInfo

*PAGE

This is using an API call to fetch the IP address of the Nfield server.

It then issues a second API call using the IP address from the previous step to fetch information from that IP address.

*REQUEST RequestResult ThisIPAdr ‘NfieldServerIP’

** Here we use a JSON operator to extract the IP address from the JSON string that we now

** have in ThisIPAdr. See the list of operators in section Expression Operators of the

** Nfield Reference.

*PUT ThisIpAdr [?JSON(ThisIpAdr,"ip")]

** Get the details of our IP address

*REQUEST RequestResult IPInfo 'IPDetails'

*PAGE

*?IPInfo

*END

Let’s run the interview:

Command Index

Page 241

Click Next, and you get the current IP address and the details of you current Nfield server:

IMPORTANT: Please note that scripters are OBLIGATED to handle the request results in

their script -- all the values the request gets, including the possible errors. Otherwise, if you

get problems during fieldwork with your request, your helpdesk will NOT be able to figure

out what happened. There is no way to tell if you don’t handle those result values, so you

should handle any errors that the request might get in your script.

For example, if you get -1 (time-out) as error, you script will need to decide what happens:

to fire the *REQUEST again or to suspend the survey and ask your respondent to try again

later. If you don’t handle this error, the survey will continue with the next question and an

empty result for your request.

Command Index

Page 242

For more information on *REQUEST command please see our NIPO Academy #48 on

this subject.

https://nipo.com/academy-videos

Command Index

Page 243

6.61 *RETURN
Purpose

Returns from subroutine.

Syntax

*RETURN

Description

Returns from a subroutine before the physical end of the subroutine is reached. This command is

also allowed under condition.

Example

*TEXTVARS PAPER, OTHERPAPER

*SUBROUTINE "NEWSPAPER"

*QUESTION 101 *NUMBER L1 *MAX 6

 How many of the last 6 issues of *?PAPER did you read?

*IF [Q101 = 0] *RETURN

*QUESTION 102 *CODES L1

 Did you read *?PAPER yesterday?

 1: Yes

 2: No

*ENDSUB

*QUESTION 1 *CODES L8 *MULTI *SAVE PAPER

Which newspapers do you read?

 1: La Repubblica *GOSUB NEWSPAPER

 2: La Stanza *GOSUB NEWSPAPER

 3: The Mirror *GOSUB NEWSPAPER

 4: The New York Times *GOSUB NEWSPAPER

 5: Le Figaro *GOSUB NEWSPAPER

 6: La Libération *GOSUB NEWSPAPER

 7: El Pais *GOSUB NEWSPAPER

 8: Other *OPEN *GOSUB NEWSPAPER

6.61.1.1 See Also

*GOSUB ... 151

*SUBROUTINE ... *ENDSUB 260

Command Index

Page 244

6.62 *ROT
Purpose

Displays answer categories rotated.

Syntax

*ROT

Description

This command is always used in combination with a *CODES question, or *REPEAT or *MATRIX

blocks and must be on the same line as the question definition. The codes and their labels are shown

in rotated order on the screen, starting randomly from any of the available answer codes. Then the

next codes follow in sequence, up to and including the highest code. Next the lowest codes follow up

to code where it randomly started.

When you do a rotation, it chooses a random starting point, and from that point onwards it shows the

rest of the list in rotated order.

Arguments

pos

The data field specification where the order of the displayed categories is written in the closed

answer file.

length

The length of the data field.

Remarks

• With *NOCON answer codes can be excluded from the rotation. *NOCON excludes all remaining

answer codes starting from the first answer code where it is specified.

Example

*QUESTION 1 *CODES 61L10 *MULTI *ROT 71L8

Which car brands do you know?

 1: BMW

 2: Audi

 3: Kia

 4: Toyota

 5: Honda

 6: Nissan

 7: Skoda

 8: Peugeot

 9: Other *OPEN *NOCON

10: Don’t know *NMUL

In this example, all mentions are stored in position 61L10. In the answer field behind *ROT the codes

for the first 4 codes on the screen are stored. The last two codes are not rotated along and are

always displayed at the bottom of the code list.

Command Index

Page 245

6.62.1.1 See Also

*GROUP .. 155

*NOCON ... 198

*ORDER .. 206

*RANDOM ... 221

*REPEAT ... *ENDREP 230

Command Index

Page 246

6.63 *SAMPLEDATA
Purpose

With this command variables in the NIPO ODIN questionnaire can be linked automatically with field

names in the sample table, and the quota variables, URL parameters, or fieldnames in the CAPI

address.

Syntax

*SAMPLEDATA var1,var2,…

Description

The variable in the NIPO ODIN questionnaire is filled automatically with the contents of the matching

database field when starting the interview. The fields in the database table are updated with the

contents of the variable when closing the interview for a final (non-)response or an appointment. In

every other aspect, a sample data variable works just like a regular NIPO ODIN text variable.

Maximum character length of a *SAMPLEDATA value is 1500.

You use *SAMPLEDATA to refer to the parameters in a URL, both for the starting link and the exit link.

For more information, please see the Exit Links chapter.

Example 1

*SAMPLEDATA Region

*PAGE

According to our database the region is *?Region.

Assumes that the sample table for survey A1234 contains a field called Region.

Example 2

*SAMPLEDATA Gender

*QUESTION 7 *CODES 91 *SAVE Gender

Gender?

1: Man

2: Woman

Saves the label text (‘Man’ or ‘Woman’) directly in the sample table field Gender (requires the field to

exist).

6.63.1.1 See Also

*PUT... 217

*TEXTVARS ... 268

*VARS ... 286

Command Index

Page 247

6.64 *SAVE (question option)
Purpose

Saves the answer of a question in a variable.

Syntax

*SAVE <var | array>

Description

This command is always used in combination with *QUESTION and must be specified after this

command on the same line. The answer on a question is saved in a *VARS, *TEXTVARS or

*SAMPLEDATA variable. If it is a numeric variable the code value or the number is saved. If it is a text

variable with a closed question with precoded answers the label of the code is saved. Saving an

answer text is particularly of use if you want to insert this text in a subsequent question (dynamic

text modification).

May not be used in a single question in combination with *SAVE as a code option. If used on a

*MULTI question, it saves the lowest selected code (text) only.

Remark

*SAVE as a question option is ignored if the question also uses *SAVE as a codes option.

Arguments

var

Any (alpha)-numerical variable or any of the ten system variables. If the argument is omitted system

variable 0 is used by default.
Array

Array of variables.

Example 1

*TEXTVARS PARTY

*QUESTION 5 *CODES 81 *SAVE PARTY

Which party will you vote for in the next election?

 1: Conservative union

 2: Social democrats

 3: Liberals

 4: Greens

 5: Socialists

 6: Other party *OPEN

 7: None *GOTO 7

*QUESTION 6 *CODES 82

Did you also vote for the *? PARTY in the previous election?

 1: Yes

 2: No

*QUESTION 7

...

Command Index

Page 248

Example 2

*TEXTVARS Mydata

*QUESTION 1 *CODES 61L5 *MULTI *SAVE Mydata

Please pick some letters

1:A

2:B

3:C

4:D

5:E

*PAGE

*?Mydata

Let’s say the user selects options 2, 3 and 4 – it will show “B”, which is the text of the lowest selected code.

6.64.1.1 See Also

*PUT... 217

*SAVE (codes option) 249

Command Index

Page 249

6.65 *SAVE (codes option)
Purpose

Saves a code number or label in a variable.

Syntax

*SAVE <var>

Description

This command is always used after a code definition and must be specified after this code on the

same line. If it is a numeric variable the code value is saved as answer. If it is a text variable the

descriptive text of the answer category is saved. If it is an open code the open-ended answer text is

saved.

Remark

If *SAVE is used as a codes option, *SAVE as a question option on the same question is ignored.

Arguments

var

Any (alpha)-numerical variable or any of the ten system variables. If the argument is omitted system

variable 0 is used by default.

Example

*TEXTVARS localpaper

*QUESTION 1 *CODES L7 *MULTI

To what newspapers do you subscribe?

1: New York Times

2: The Guardian

3: Sunday Times

4: Washington Post

5: Herald Tribune

6: A local paper *OPEN *SAVE localpaper

7: Don’t know *NMUL

*QUESTION 2 *CODES L1 *IF [Q1,6]

Do you read *? localpaper frequently?

1: Yes

2: No

6.65.1.1 See Also

*SAVE (question option) 247

Command Index

Page 250

6.66 *SHOWDOCUMENT
Purpose

To create a Help button for your interviews.

Description

When clicked, the Help button opens a PDF file and after reading it, the interviewer returns to the

questionnaire again. The behavior is the same for CAPI and Online interviews.

Remarks

▪ Available for Nfield CAPI and Online surveys.

▪ This feature is available for versions of the Nfield CAPI app v1.116.000 and higher.

▪ The PDF should be uploaded in the "Media Files" section of the questionnaire settings.

▪ Standard rendering of the help button is in front of the question text. It is also possible to

render it as a button in the navigation bar using NfieldChicago template (see example).

▪ Please make sure to test this functionality before deploying it to your fieldwork force as we

have noticed that not all the PDF readers installed on the interviewing devices behave the

same. If you have a wrong PDF reader installed, your interviewer might not be able to resume

the interview. We recommend installing one version of PDF reader with clear instructions to

your interviewers.

Syntax

*QUESTION <n>|X *SHOWDOCUMENT

"<name_of_pdf_help_file>;text=<text_to_display_on_button>"

Arguments

name_of_pdf_help_file

Name of the pdf help file that will show up after the Help button is clicked.
text_to_display_on_button

Text to display on the Help button.

Example

*TEMPLATE "NfieldChicago"

*QUESTION 1 *CODES 61L1 *SHOWDOCUMENT "data.pdf;text=Help page (pdf)"

Can you tell us your household income?

1:Under $30,000

2:$30,001 to $50,000

3:$50,001 to $75,000

4:$75,001 to $100,000

5:$100,001 or over

*END

Result

This produces a question that looks like this (note that “Help page (pdf)” is a clickable link):

Command Index

Page 251

With the use of a simple theme it is possible to move and transform this help link into a proper

button, and to place it at the bottom of the page, like in the example below:

How to do that can be found in this section of the NfieldChicago documentation.

6.66.1.1 See Also

*QUESTION .. 220

http://elink.nipo.com/c/4/?T=OTMwODE2NzA%3AcDEtYjE5MzAzLTM0NDE2M2ViOTM2ZjQzNDlhODA5MWJmMTk0NTkyMGFh%3AYTQzMTJAdG5zLW5pcG8uY29t%3AY29udGFjdC0zMGVjNzY0YjYwY2VlNDExYTZjMTZjM2JlNWJlOGM3OC04YjdiOGQ4ZGY5YTI0MTUwYWMzNzEyYjAzMTc4NjU1NQ%3AZmFsc2U%3ANA%3A%3AaHR0cHM6Ly9uZmllbGRjaGljYWdvLm5maWVsZG1yLmNvbS90aGVtZS9leGFtcGxlcy9yZWxvY2F0ZWJ1dHRvbi9pbmRleC5odG1sP19jbGRlZT1ZVFF6TVRKQWRHNXpMVzVwY0c4dVkyOXQmcmVjaXBpZW50aWQ9Y29udGFjdC0zMGVjNzY0YjYwY2VlNDExYTZjMTZjM2JlNWJlOGM3OC04YjdiOGQ4ZGY5YTI0MTUwYWMzNzEyYjAzMTc4NjU1NSZlc2lkPTI1ZjMwOWYwLTA3ZmItZTkxMS1hODEzLTAwMGQzYWI1NWZlYQ&K=cEDBypx0MHxwEQRGfC9QOQ
http://elink.nipo.com/c/4/?T=OTMwODE2NzA%3AcDEtYjE5MzAzLTM0NDE2M2ViOTM2ZjQzNDlhODA5MWJmMTk0NTkyMGFh%3AYTQzMTJAdG5zLW5pcG8uY29t%3AY29udGFjdC0zMGVjNzY0YjYwY2VlNDExYTZjMTZjM2JlNWJlOGM3OC04YjdiOGQ4ZGY5YTI0MTUwYWMzNzEyYjAzMTc4NjU1NQ%3AZmFsc2U%3AMg%3A%3AaHR0cHM6Ly93d3cubmlwby5jb20vTmlwby9tZWRpYS9OaXBvL0VtYWlsaW5nL0hlbHBidXR0b24xLWxhcmdlLmpwZz9fY2xkZWU9WVRRek1USkFkRzV6TFc1cGNHOHVZMjl0JnJlY2lwaWVudGlkPWNvbnRhY3QtMzBlYzc2NGI2MGNlZTQxMWE2YzE2YzNiZTViZThjNzgtOGI3YjhkOGRmOWEyNDE1MGFjMzcxMmIwMzE3ODY1NTUmZXNpZD0yNWYzMDlmMC0wN2ZiLWU5MTEtYTgxMy0wMDBkM2FiNTVmZWE&K=bAzmgYdBTr6uUuGO-xOFyQ
http://elink.nipo.com/c/4/?T=OTMwODE2NzA%3AcDEtYjE5MzAzLTM0NDE2M2ViOTM2ZjQzNDlhODA5MWJmMTk0NTkyMGFh%3AYTQzMTJAdG5zLW5pcG8uY29t%3AY29udGFjdC0zMGVjNzY0YjYwY2VlNDExYTZjMTZjM2JlNWJlOGM3OC04YjdiOGQ4ZGY5YTI0MTUwYWMzNzEyYjAzMTc4NjU1NQ%3AZmFsc2U%3AMw%3A%3AaHR0cHM6Ly93d3cubmlwby5jb20vTmlwby9tZWRpYS9OaXBvL0VtYWlsaW5nL0hlbHBidXR0b24yLWxhcmdlLmpwZz9fY2xkZWU9WVRRek1USkFkRzV6TFc1cGNHOHVZMjl0JnJlY2lwaWVudGlkPWNvbnRhY3QtMzBlYzc2NGI2MGNlZTQxMWE2YzE2YzNiZTViZThjNzgtOGI3YjhkOGRmOWEyNDE1MGFjMzcxMmIwMzE3ODY1NTUmZXNpZD0yNWYzMDlmMC0wN2ZiLWU5MTEtYTgxMy0wMDBkM2FiNTVmZWE&K=hvAjSMbGrMz6s57h_0iBKQ

Command Index

Page 252

6.67 *SORT and *STOPSORT
Purpose

To order questions and matrixes alphabetically.

Description

*SORT can be used in combination with a *QUESTION command or a *MATRIX command to sort the

answer categories or statements alphabetically. Categories will be sorted in ascending order

according to the language and country rules as specified in the languagecode-countrycode

parameter.

To stop the alphabetical sort, you can use *NOCON on an answer category. That answer category and

all following answer categories will not be sorted and instead will keep the order as they are in the

script. *NOCON will also exclude those items from other sorting commands and the *CONTROL

command. Unlike *NOCON, the *STOPSORT command only stops the alphabetical sorting (similarly to

*STOPRANDOM on *RANDOM).

*SORT cannot be used together with other sorting commands, like *RANDOM and *ORDER. As with

those commands, inserting a line break in the list of answer categories will split the list into groups,

which will then be sorted separately.

Syntax

*SORT <languagecode-countrycode>

Arguments

languagecode-countrycode

Language and country code. This parameter is mandatory and will be validated against .NET culture

codes. If the parameter consists of a code which is not valid or not supported, Nfield will use the

default sorting language, which is en-us (US English).

Note: If you are using *SWILANG command to allow the respondent to change languages, you will

want those languages to apply to your *SORT commands as well. To do this, you need to add the

culture code as an argument to the *LANGUAGE command in your language section(s).

For example:

*LANGUAGE "Danish,LTR,da-DK"

The first element of this argument remains fully customizable (you can name the language any way

you name it in the script), the second and third elements are the text direction (LTR or RTL) and

culture code (da-DK). These are optional. If you leave them out, Nfield will revert to the default

options (left-to-right and en-US respectively). If you include both text direction and culture code,

https://www.venea.net/web/culture-code
https://www.venea.net/web/culture-code

Command Index

Page 253

then the culture code must come after the text direction (so "Danish, da-DK, LTR" will not

work).

Note 2: NIPO ODIN Developer version 5.18.0.29 (or lower) does not support this command.

Example 1 Simple category question

*TEMPLATE "NfieldChicago"

*LIST Countries

1: USA

2: France

3: India

4: China

5: South Africa

6: Other, namely *OPEN *STOPSORT

*LIST standard_buttons

98: Don't know

99: None of the above

*QUESTION 20 *CODES 65L24 *SORT en-us *MULTI *USEBUTTONS 65L1 "standard_buttons"

Which countries have you visited?

*USELIST " Countries "

Example 2 Matrix question

*TEMPLATE "NfieldChicago"

*QUESTION 30 *CODES 90L2 *DUMMY

*USELIST "Countries"

*MATRIX 12 Q30 *FIELD 92L15 *SORT en-us

For each of these countries, please choose which animal you associate it with.

*QUESTION 40 *CODES 1L1 *SORT en-us

1: Quetzal

2: Alpaca

3: Zebra

4: Phoenix

5: Axolotl

6: Dodo *NOCON

*ENDMATRIX

Command Index

Page 254

6.67.1.1 See Also

*MATRIX ... 182

*ORDER .. 206

*RANDOM ... 221

*SWILANG .. 262

*QUESTION .. 220

Command Index

Page 255

6.68 *SPLITSTRING
Purpose

To split a string into multiple parts based on specified delimiters. This command is used in scripts to
process strings and store the results for further use. It is useful in scenarios where you need to break
down a string into manageable parts.

Syntax

*SPLITSTRING <resultCount> <resultString> <stringToSplit> <delimiter>

Arguments

resultCount

The variable where the count of split parts will be stored, one of:

• variable

• array variable (count goes to element specified by index)

resultString

The variable where the split parts will be stored, must be an array text variable.

stringToSplit

The string that needs to be split, one of:

• "text" (*? allowed)

• text variable

• array text variable (specify by index)

delimiter

The delimiter(s) used to split the string. Multiple delimiters can be specified, one of:

• "text" (*? allowed)

• text variable

• array text variable

• array text variable (by index)

Example 1 Basic split

In below example user input sentence is split by ',' (comma) character.

*TEMPLATE "NfieldChicago"

*VARS ResultCount

*TEXTVARS Result[10],Input

*QUESTION 10 *OPEN 61L100 *SAVE Input

Please list up to 10 fruits you have had for breakfast in the last month. Separate each item with a comma.

*SPLITSTRING ResultCount Result Input ","

*PAGE

Input: *?Input

ResultCount: *?ResultCount

Result:

*?Result[1]

*?Result[2]

*?Result[3]

Command Index

Page 256

Example 2 Multiple delimiters

*TEMPLATE "NfieldChicago"

*VARS ResultCount

*TEXTVARS Result[10],Input,Delimiters[3]

*PUT Delimiters[1] ','

*PUT Delimiters[2] '.'

*PUT Delimiters[3] '|'

*PUT Input 'I need to split. Not only by comma, but also by dot | and by pipe as well'

*SPLITSTRING ResultCount Result Input Delimiters

*PAGE

Input: *?Input

ResultCount: *?ResultCount

Result:

*?Result[1]

*?Result[2]

*?Result[3]

In this case the sentence is split by 3 characters, example sentence will result in such split:

ResultCount : 4 Result :

• [1][I need to split]

• [2][Not only by comma]

• [3][but also by dot]

• [4][and by pipe as well]

• [5][]

• [6][]

• ...

Example 3 Count greater then declared result array

*TEMPLATE "NfieldChicago"

*VARS ResultCount

*TEXTVARS Result[3], Input

*PUT Input 'apple,banana,orange,grape,watermelon'

*SPLITSTRING ResultCount Result Input ","

*PAGE

Input: *?Input

ResultCount: *?ResultCount

Result:

*?Result[1]

*?Result[2]

*?Result[3

In this example, the input string contains five items separated by commas, but the Result array is

only declared to hold three items. The *SPLITSTRING command will split the input string and store

the first three parts in the Result array, while the ResultCount will reflect the total number of

parts (which is 5 in this case).

Remarks

Command Index

Page 257

1. The <stringToSplit> and <delimiter> parameters cannot be empty.

2. Delimiters are case-sensitive.

3. The ResultCount parameter will always show the total number of strings generated by the

command, even if the Result parameter defined to store less than that number. (So, if in

the above example 1, the respondent enters not 10 but 12 fruits, ResultCount will show 12,

but the last 2 strings will not be stored as a Result, since it has been defined to only hold 10

items).

Note: Current NIPO ODIN Developer does not support this command yet but will support it in a future

release.

6.68.1.1 See Also

String manipulation routines 53

Command Index

Page 258

6.69 *STOPRANDOM
Purpose

Specifies that the code and all following codes in a question do not come under randomization.

Syntax

*STOPRANDOM

Description

This command is always used behind a code definition and must be specified after this code on the

same line. This command is used for the question options *RANDOM. It excludes all codes starting

from the code that have * STOPRANDOM as option from randomization.

Example

*QUESTION 1 *CODES 61L10 *MULTI *RANDOM

What PC brands do you know?

 1: Acer

 2: AST

 3: Compaq

 4: Dell

 5: Hewlett Packard

 6: IBM

 7: Philips

 8: Tulip

 9: Other *OPEN

10: Don’t know any makes*NMUL *STOPRANDOM

In this example, code 10 in question 2 is always displayed last.

6.69.1.1 See Also

*RANDOM ... 221

Command Index

Page 259

6.70 *STRAT
Purpose

Stratification on output.

Syntax

*STRAT <n|[expression]>

Description

With this command a check can be made to see if a certain stratum has reached its limit. The

stratification criteria are put in the sample table record during the interview, so-called stratification

on output. If the stratum limit is reached, the questionnaire is continued with the question with the

question number indicated by the argument.

Arguments

n|expression

A positive integer that specifies an existing question number.

Example

*SAMPLEDATA OwnsVCR

*QUESTION 2 *CODES 61 *SAVE OwnsVCR

Do you own a VCR?

1: Yes

2: No

*STRAT 99

*QUESTION 3 *CODES 62

Did you use your VCR yesterday?

1: Yes

2: No

*QUESTION 4

Thank you for your co-operation.

*END

*QUESTION 99

I don’t have any more questions for you.

Thank you for your co-operation.

*ENDNGB

In this example, the answer of question 2 is transferred to the sample table record and the

stratification levels are checked to see if the quota was reached. If so, a jump to question 99 is made.

6.70.1.1 See Also

*END ... 126

*ENDNGB.. 128

*ENDST .. 131

Command Index

Page 260

6.71 *SUBROUTINE ... *ENDSUB
Purpose

Defines a subroutine.

Syntax

*SUBROUTINE name

<commands>

*ENDSUB

Description

Defines the start of a subroutine. This command has to be at the beginning of a line. This command is

always used in combination with *ENDSUB (end subroutine). The subroutine can be jumped to at any

time with *GOSUB.

A subroutine consists of a set of commands and questions that the system considers as a special

component. When a subroutine is called in the questionnaire the system executes the commands in

the subroutine. It is as if the commands in the subroutine are inserted where the subroutine was

called. The answer fields in a subroutine will be considered relative.

When a subroutine is called the system uses the position in the *FIELD parameter belonging to

*GOSUB as the starting point to determine where the answers have to be put. A subroutine is

considered a separate component of the questionnaire. It should be placed somewhere in the

questionnaire before the first call to the subroutine.

In a subroutine you can call subroutines recursively.

Subroutines can also be called after a *NEW command, when placed in the first sub-questionnaires.

Arguments

name

The name of the subroutine.

Remarks

It is not allowed to jump out of a subroutine by means of the *GOTO command. To end subroutine

execution, use *RETURN instead.

Example

*TEXTVARS BRAND

*SUBROUTINE OPINION

*QUESTION 1 *CODES L1

What do you think of the service of *? BRAND?

1: Very good

2: Good

3: Poor

4: Very poor

*ENDSUB

*QUESTION 2 *CODES L5 *MULTI

Which of the following gas stations have you ever visited?

1: Esso *PUT BRAND "Esso" *GOSUB OPINION

2: Shell *PUT BRAND "Shell" *GOSUB OPINION

3: Texaco *PUT BRAND "Texaco" *GOSUB OPINION

Command Index

Page 261

4: BP *PUT BRAND "BP" *GOSUB OPINION

5: Mobil *PUT BRAND "Mobil" *GOSUB OPINION

6.71.1.1 See Also

*FIELD ... 134

*GOSUB ... 151

*RETURN .. 243

Command Index

Page 262

6.72 *SWILANG
Purpose

Switches to another (predefined) language.

Syntax

*SWILANG "[name]"

Description

With this command it is possible to switch to another language during the interview. The name in the

syntax has to match the name of the language section.

Arguments

name

This is the name of the language section that NIPO ODIN refers to. To switch to the default language

you can omit a name.

Remark

• The double quotes around the section name are mandatory.

• In the documentation for the Nfield Chicago template, there is also description on how enable

the users to be able to switch language anytime in the questionnaire. There is also a useful blog

about this feature here.

Example

*QUESTION 1 *CODES 201

Interviewer: choose a language

1: Dutch *SWILANG "Dutch"

2: German *SWILANG "German"

3: French *SWILANG "French"

4: English *SWILANG ""

*QUESTION 2 *CODES 202

Do you have a dog?

1: Yes

2: No

*END

*LANGUAGE "Dutch"

*QUESTION 2

Heeft u een hond?

1: Ja

2: Nee

*LANGUAGE "German"

*QUESTION 2

Haben Sie einen Hund?

1: Ja

2: Nein

*LANGUAGE "French"

*QUESTION 2

Avez vous un chien?

https://nfieldchicago.nfieldmr.com/accessibility/page-language/index.html
https://www.nipo.com/seamless-language-switching-for-multilingual-respondents

Command Index

Page 263

1: Oui

2: Non

6.72.1.1 See Also

*LANGUAGE.. 169

https://nfieldchicago.nfieldmr.com/accessibility/page-language/index.html

https://nfieldchicago.nfieldmr.com/accessibility/page-language/index.html

Command Index

Page 264

6.73 *TABLE
Purpose

Enables export information for hierarchical data for the NIPO DSC for IBM SPSS, used by the IBM SPSS

Data Collection Data Model as well as to the NIPO data model as used in the data repositories.

It also propagates the properties of codes of the controlling question of *MATRIX or a *REPEAT to

the corresponding questions.

Syntax

*TABLE ["<name> description"]

Description

This command influences the NIPO Diana / Nvision Script export for use with the NIPO DSC for IBM

SPSS. It adds a comment line (COM) to the variable definition which tells the NIPO DSC for IBM SPSS

interface that the *FORM or *MATRIX questions, or *REPEAT block must be used for a hierarchical

data representation.

The *TABLE command is required to have the data reflected from *REPEATs and *MATRIXes in the

data repositories.

The *TABLE command does not affect The COM line is ignored in NIPO Diana / Nvision Script.

This command can be used in two ways:

1. On a *FORM question definition no label needs to be specified, as the block name is taken

from the variable name or the variable *LABEL. Hierarchical data of the fields of a *FORM

question can only be created if all fields in the *FORM question are of the same type and size

(for example, all *NUMBERs of size 2, et cetera).

2. Within a *REPEAT block the *TABLE command is specified in advance of the first question in

the repeat block and defines a name for the current iteration.

3. Within a *MATRIX, the *TABLE command is specified in on the same line as *MATRIX

command.

Arguments

"<name> description"

For use in *REPEAT blocks only. The name part of the text is required and consists of a single word

that sets the name of the hierarchical block of data. The description contains a descriptive text that

is different for each iteration within the *REPEAT block. Change this text within a repeat block by

displaying variable content using *? (example below).

Example 1: *REPEAT block with two questions

*TEMPLATE NfieldChicago

*TEXTVARS Brand

*REPEAT 4 *FIELD 101L24

*IF [?R = 1] *PUT Brand "Grolsch"

*IF [?R = 2] *PUT Brand "Hertog Jan"

*IF [?R = 3] *PUT Brand "Amstel"

*IF [?R = 4] *PUT Brand "Leeuw"

*TABLE "Beer *? Brand"

Command Index

Page 265

*QUESTION 5 *CODES 1L1

For *? Brand, please mark your overall taste experience:

 1: Good

 2: Above average

 3: Average

 4: Below average

 5: Bad

*QUESTION 6 *FORM *TABLE *LABEL "Consumption"

Your average consumption of *? Brand on a weekly basis:

1: Glasses: *NUMBER 3L2 *NON

2: Bottles: *NUMBER 5L2 *NON

*ENDREP

This creates a comment line that tells the NIPO DSC for IBM SPSS to lay out the repeat block in a

hierarchical data structure, where the block is named "Beer" and the nested brand block names are

specified in the *IF lines. Inside each brand block there is a nested "Consumption" block.

Example 2: *TABLE with *MATRIX

** Use the NfieldChicago template

*TEMPLATE "NfieldChicago"

*QUESTION 10 *CODES 61L1 *DUMMY

1:BrandA

2:BrandB

3:BrandC

4:BrandD

5:BrandE

6:BrandF

*MATRIX 6 Q10 *FIELD 62L6 *TABLE "UsedBrandsMatrix"

Have you ever used this brand?

*QUESTION 20 *CODES 1L1 *VAR "UsedBrands"

1:Yes

2:No

3:I can’t remember

*ENDMATRIX

Similarly, to *REPEAT example, this *MATRIX with *TABLE example creates a comment line that tells

the NIPO DSC for IBM SPSS to lay out the matrix block in a hierarchical data structure, where the

block is named " UsedBrandsMatrix " and the nested brand block names are specified in the *IF

lines. Inside each brand block there is a nested " UsedBrands " block.

6.73.1.1 See Also

*LABEL .. 168

*VAR .. 284

Command Index

Page 266

6.74 *TEMPLATE
Purpose

Switch to a specific template and optional theme.

Syntax

*TEMPLATE "[templatename[;themename]]"

Description

Switches to the selected template and theme at the next question or page, except for introductions

(see remarks below). Templates and themes are typically selected at the start of the script. Using

different templates in a single questionnaire is not recommended, but themes may be changed to

appeal to certain demographics or characteristics of the respondent.

Arguments

templatename

The full name of the template to use. The name is case-insensitive. The template must be available

on your domain.
themename

The name of the theme to use. The name is case-insensitive. The theme must have been previously

uploaded to Nfield.

Remarks

• When no template is selected, a system factory styling is applied.

• Templates contain template-specific control rendering and rendering options. Script logic

may rely on rendering controls that are specific to the template in use. Switching templates

in a questionnaire may cause a template to malfunction because the rendering controls used

by a question might not be available in the last selected template. Template switching during

a questionnaire is therefore not recommended. To apply a different look and feel to a

template, consider switching between themes.

• To return to the factory default template, use *TEMPLATE "".

• To switch off a theme without using a new theme, call *TEMPLATE with the template name

followed by a semi-colon only.

Example

** Use the Nfield template

*TEMPLATE "NfieldChicago"

*QUESTION 1 *CODES 61

Do you own a car?

1: Yes

2: No

** Switch to a different theme

* TEMPLATE "NfieldChicago;softdrink"

*QUESTION 2

Thank you for your cooperation.

Command Index

Page 267

6.74.1.1 See Also

*UIOPTIONS (command) 270

*UIRENDER (question option) 272

*UIRENDER (command) 274

*UIRENDER (question option) 276

Command Index

Page 268

6.75 *TEXTVARS
Purpose

Defines one or more text variables or arrays.

Syntax

*TEXTVARS <name>[,name2,...]

or

*TEXTVARS <name[size]>[,name2[size2],...]

Description

Defines text variables or one-dimensional text arrays. This command has to be at the beginning of

the line. These text variables or arrays can be used throughout the entire questionnaire to store data

or retrieve data. In text variables or arrays all alphanumerical data can be stored. A text variable or

array initially is empty.

Note:

For technical reasons it is not possible to use variables which name start with an L. Also, you

cannot have a variable named B. As a rule, it is not recommended to use 1 letter variable

names.

System variables do not need to be defined.

Arguments

name

The name of the variable or array. Multiple variables or arrays can be created with a single

*TEXTVARS command by including additional variable or array names separated by commas (Name2,

Name3, and so on).

size

Specifies the size of the array to be created. Only one-dimensional arrays are supported. The variable

will contain the specified amount of rows: you have created size variables with the same name.

Example

*TEXTVARS UHELP[2]

*QUESTION 2 *ALPHA 151L20 *SAVE UHELP[1]

What is the name of the oldest child?

*QUESTION 3 *ALPHA 171L20 *SAVE UHELP[2]

What is the name of the second oldest child?

*PAGE

The oldest child is named *? UHELP[1]

The second oldest child is named *? UHELP[2]

Command Index

Page 269

6.75.1.1 See Also

*? ... 99

*PUT... 217

*SAMPLEDATA ... 246

*SAVE (codes option) 249

*SAVE (question option) 247

*VARS ... 286

Command Index

Page 270

6.76 *UIOPTIONS (command)
Purpose

Sets the options for all questions with the currently active rendering control of a question.

Syntax

*UIOPTIONS "[name1]=[value1];[name2]=[value2];{...}"

Description

This control sets the options for the questions with the currently active rendering control for the

remainder of the questionnaire or until another option is selected.

Arguments

name1=value1;name2=value2; ...

Refer to the template documentation for details for the names of the options and the possible values

given to these options. Note that depending on the template design, the options may be case-

sensitive. Do not use ' ' (space) after ';' (semicolon)!

Remarks

• Ensure that the currently active template supports the options and that the values are valid.
Unknown options are ignored.

• To reset default options for a *UIOPTION control, use *UIOPTIONS ""

• When there are multiple types of *UIOPTIONS in a script, new options will be appended to

existing options, i.e. the new command will not completely replace the previous command.

Only the changed types of the *UIOPTIONS will be overwritten, and other (not mentioned in

the new command) types of *UIOPTIONS will be appended. This also applies

to *UIOPTIONS on a question. The previous options will be reverted when leaving the scope

of the question.

• In case the *UIOPTIONS value is an expression, the expression will be evaluated at the time

the *UIOPTIONS block is encountered, not at the time the options are applied to a block.

• *UIOPTIONS can also be a variable.

• When switching templates, *UIOPTION controls set for question types are NOT reset to the

factory defaults. So, if we set some *UIOPTIONS in one template, then switch to another

template, if this new template supports these *UIOPTIONS, they will be enabled. If it does

not -- they will be ignored. If we revert to the first template, those *UIOPTIONS will still be

enabled.

Example: Global *UIOPTIONS vs question *UIOPTIONS

The question options overwrite the global ones for that specific question (question 2). The global

ones are reverted to on the next question (Q3 in our example). So, for the Q1 and Q3 we see the

instruction “Common instructions: please type some text”, and for Q2 we see instruction “Question 2

instructions: please type a number between 0 and 99”.

Command Index

Page 271

*TEMPLATE "NfieldChicago"

*UIOPTIONS "Instruction=Common instructions: please type some text"

*QUESTION 1 *ALPHA 61L30

A text question

*QUESTION 2 *NUMBER 92L2 *UIOPTIONS "Instruction=Question 2 instructions: please type a number between 0 and 99"

Numeric question

*QUESTION 3 *ALPHA 94L30

Text question again

*END

6.76.1.1 See Also

*TEMPLATE... 266

*UIOPTIONS (question option)............... 272

*UIRENDER (command) 274

*UIRENDER (question option) 276

Command Index

Page 272

6.77 *UIOPTIONS (question option)
Purpose

Sets the options for the current question with the currently active rendering control of a question.

Syntax

*UIOPTIONS "[name1]=[value1];[name2]=[value2];{...}"

Description

This question option sets the options for the current question with the currently active rendering

control. It may be used in combination with the *UIRENDER command (see "*UIRENDER

(command)") to set custom options as defaults for a question type or it may be used to set the

rendering control options for one specific question or field only. Note that even without an explicitly

selected rendering control, options may be set - in this case the options apply to the template's

default rendering control for the question.

Arguments

name1=value1;name2=value2; ...

Options that are understood by the currently selected rendering control for the current question

type. Refer to the template documentation for details for the names of the options and the possible

values given to these options. Note that depending on the template design, the options may be case-

sensitive. Do not use ' ' (space) after ';' (semicolon)!

Remarks

• Ensure that the currently active rendering control supports the options and that the values
are valid. Unknown options are ignored.

• To reset default options for a rendering control, use *UIRENDER
"[questiontype]=[renderingcontrol]" *UIOPTIONS ""

• Enforcing screen orientation for a question: you may want to control the way a question
appears on the interviewer's device. In Nfield Manager you can set the screen orientation for
your entire survey. Screen orientation for specific questions can be enforced by adding
orientation=landscape; or orientation=portrait; to the *UIOPTIONS command on
a question. This option can be set for questions separately; it overrides the Nfield Manager
settings for the survey. You can - for instance - display large grids/matrix-questions always
in landscape, making for a better interviewing experience.

Example 1

*TEMPLATE "NfieldChicago"play to start the video clip.;minimum-duration=-1"

*QUESTION 40 *CODES 64L6 *MULTI *PICT "CarKnow.mp3" *UIOPTIONS "mandatoryplay=false"

** mandatoryplay=false: this option makes playing the audio before answering the question optional

Which of these car brands do you know?

1:Mercedes *PICT "Mercedes.mp3"

2:Chevrolet *PICT "Chevrolet.mp3"

3:Ford *PICT "Ford.mp3"

4:Volvo *PICT "Volvo.mp3"

5:Volkswagen *PICT "Volks.mp3"

6:Toyota *PICT "Toyota.mp3"

Command Index

Page 273

Example 2 *UIOPTIONS for playing a media file

*QUESTION 6000 *CODES L1 *UIOPTIONS “type=play;media=advertorial.mp4;scenario=MediaWithIntro;intro-text=Press play to

start the video clip.;minimum-duration=-1"

Have you previously seen the advertorial that was just shown?

1: Yes

2: No

3: Don’t remember

Example 3: *Form Fields with Default Values, 2 of Them Limited in Size, and Displaying Filled Character
Count

*TEMPLATE "NfieldChicago"

*QUESTION 10 *FORM *UIOPTIONS "instruction=Form with alpha and number fields. (* marks a required field)"

Please share your personal information with us:

1:First name*: *ALPHA 61L25 *UIOPTIONS "placeholder=First name;characterCount=true" **display char count

2:Last name*: *ALPHA 86L25 *UIOPTIONS "placeholder=Last name;characterCount=true" **display char count

3:Age*: *NUMBER 111L3 *MIN [0] *MAX [110] *UIOPTIONS "placeholder=Age"

4:Nationality*: *ALPHA 114L50 *UIOPTIONS "placeholder=Nationality"

5:Annual income:*NUMBER 164L6 *NON *UIOPTIONS "placeholder=Annual income"

*END

6.77.1.1 See Also

*TEMPLATE... 266

*UIOPTIONS (command) 270

*UIRENDER (command) 274

*UIRENDER (question option) 276

Command Index

Page 274

6.78 *UIRENDER (command)
Purpose

Sets the rendering control (visual representation and input interface) for all questions of a specific

question type.

Syntax

*UIRENDER "[questiontype]=[renderingcontrol]"

Description

This command sets how a question is displayed to the respondent. The rendering control is used for

that question type for the remainder of the questionnaire or until another rendering is selected. It

may be overridden for specific questions using the *UIRENDER question option (see "*UIRENDER

(question option)). This command may also be used under condition. If no rendering control is

explicitly selected for a question type, templates apply their default rendering for the question type.

The rendering control is defined in the template. Refer to the template documentation for the names

of the rendering controls. Because of this, it is not recommended to change templates within a

questionnaire

Arguments

questiontype

The question type for which to select the new rendering. May be *NUMBER, *ALPHA, *CODES or

*OPEN. Note that the rendering also applies to *NUMBER and *ALPHA fields in *FORM questions.
renderingcontrol

The name of the rendering control. The control must have been defined in the currently active

template, and it must be compatible with the selected questiontype. Question options and

parameters such as the question text, length of the field, and values of *MIN, *MAX and *RANGE are

passed to the rendering, but it is dependent upon the rendering whether or not these values are

used in the representation of the question.

Remarks

• To reset to the template's default rendering control, use *UIRENDER "[questiontype]=".

• When switching templates, rendering controls set for question types are reset to the factory

defaults.

• If more than one template is used by the questionnaire, make sure the selected rendering

control exists in the last selected template.

Command Index

Page 275

Example

*TEMPLATE "NfieldChicago"

**Set *FORM questions to a rendering control called "Sumslider" available in NfieldChicago template

*UIRENDER "*NUMBER=Sumslider"

*QUESTION 120 *FORM *UIOPTIONS "instruction=Numerical sliders with a minimum of $1000 and a maximum of $2000."

You think you spent about $1000 to 2000. On what did you spend it?

1:Lunch: *NUMBER 61L4 *NON *MIN [0] *MAX [1000]

2:Day trips: *NUMBER 65L4 *NON *MIN [0] *MAX [1000]

3:Dinner: *NUMBER 69L4 *NON *MIN [0] *MAX [1000]

4:Evening entertainment: *NUMBER 73L4 *NON *MIN [0] *MAX [1000]

5:Total: *NUMBER 77L4 *MIN [1000] *MAX [2000] *UIOPTIONS "field=total"

*END

6.78.1.1 See Also

*PICT (codes option) 212

*TEMPLATE... 266

*UIOPTIONS (command) 270

*UIOPTIONS (question option)............... 272

*UIRENDER (question option) 276

Command Index

Page 276

6.79 *UIRENDER (question option)
Purpose

Sets the rendering (visual representation and input interface) for a single question.

Syntax

*UIRENDER "[renderingcontrol]"

Description

This command sets the new rendering for a single question. This overrides any default rendering

control set by the *UIRENDER command (see "*UIRENDER (command)"). The selected rendering

control must be available in the currently active template. If no rendering control is specified and no

rendering control has been specified for this question type, templates apply their default rendering

for the question type.

Arguments

renderingcontrol

The name of the rendering control. The rendering must have been defined in the currently active

template, and it must be compatible with the question on which the rendering is used. Rendering

controls must have been documented by template's designer. Refer to the template's documentation

for more information.

Question options and parameters such as the question text, length of the field, and values of *MIN,

*MAX and *RANGE are passed to the rendering control, but it is dependent upon the rendering

control whether or not these values are used in the representation of the question.

Remarks

• If more than one template is used by the questionnaire, make sure the selected rendering

control exists in the currently active template.

• This question option may also be used on fields in a *FORM question.

Example: *UIRENDER determines that the *MATRIX contains the radio sliders

*TEMPLATE "NfieldChicago"

*QUESTION 10 *CODES 61L1 *DUMMY

Things to do as a tourist:

1:Eating

2:Accomodation

3:Transportation

4:Shopping

*MATRIX 4 Q10 *FIELD 62L4 *UIRENDER "Radiosliders" *UIOPTIONS "instruction=Please rate all statements"

What do you think of the price level in Chicago, regarding...

*QUESTION 710 *CODES 1L1

Costs

1:Very low

2:Low

3:Average

4:High

5:Very high

*ENDMATRIX

*END

Command Index

Page 277

6.79.1.1 See Also

*TEMPLATE... 266

*UIOPTIONS (command) 270

*UIOPTIONS (question option)............... 272

*UIRENDER (command) 274

6.80 *USEBUTTONS
Purpose

This command allows the scripter to specify a list of buttons that can be used to answer a question.

Syntax

*USEBUTTONS [pos]L<length>|<pos> <"list_of_buttons">

Description

This command allows the scripter to call on a list of buttons that can be used to answer a question.

It has a separate field to store the answer independent from the question. Button properties are also

supported if defined in the button list.

This command does not replace *BUT command, but *BUT has an issue: if the value written by the

*BUT command is also a valid answer to the question (for example, for a question “What is your

Command Index

Page 278

age?”, and the *BUT command with a value of 99, there will be an ambiguity if 99 is answered). The

*USEBUTTONS solves this by storing the button answer in separate field.

Arguments

[pos]L<length>

The 1st parameter is the field where the button’s answer will be stored. The 2nd one is the lenght. It

needs to match the highest value of the button.

list_of_buttons

A list that contains codes for every button that the scripter would like to include. The list reference

can either be a number or a name, where the name can optionally be surrounded by single quotes or

double quotes. The list can contain properties.

Remarks

• An important behavioral difference between *BUT and *USEBUTTONS is that the button
answer will no longer be stored in the regular answer field. Expressions that refer to the
answer through 'Qn(Fm)' will consider those questions 'empty'. The one notable exception
is the 'Qn,B' construction (which is used to detect whether a question was answered). This
will have to return '1' also when a button was used to answer the question.

• The related operator is ?BUTTON(Qn), where Qn is a question, returns the number of the
button if the question was answered with a button, or -1 if the button was not used. This
could be used, for example, with an *IF command:

*IF [?BUTTON(Q1) = 2] *GOTO 2

• Using both *USEBUTTONS and *BUT on a question is not allowed.

• We advise you to use the *USEBUTTONS command in combination with *ALPHA and
*NUMBER to prevent ambiguity.

• Similar to *BUT, *USEBUTTONS has no interaction with *CONTROL and all buttons will always
be shown.

• *SAVE also works identically - it will store the code into number variables and the text into
text variables.

• The behavior of *COPY, *INCLUDE and *EXCLUDE is also identical to when *BUT is used.
This means that if you want to check at runtime if a button is used from the *USEBUTTONS
list, you need to use the argument ?BUTTON(Qn).

• Buttons are not supported on matrixes and blocks.

Exports

• Upon export to .VAR a variable 'Vn_B' will be created that contains the list of possible
buttons/categories.

• The export to DIANA will link the question variable to the new button variable:
*V1_B *SNG 62L1: , Buttons

COM BUTFOR:V1

1:one

• The helper field construction will be used by all question types except the *FORM questions.

Example

*TEMPLATE NfieldChicago

Command Index

Page 279

*VARS Age,HouseNr,But3,But4

*LIST standard_buttons

1:None of your business *PROPERTIES "DIMELE=_no_answer_"

2:Don't know *PROPERTIES "DIMELE=_dont_know_"

*QUESTION 3 *NUMBER 200L2 *SAVE Age *USEBUTTONS 202L2 "standard_buttons"

What is your age?

*IF [?BUTTON(Q3) = 1] *PAGE Very well, you are ageless.

*IF [?BUTTON(Q3) = 2] *PAGE You don't remember? Are you really that old?

*IF [?BUTTON(Q3) = -1] *PAGE You are *?Age years old and there is no doubt about it.

*QUESTION 4 *FORM *USEBUTTONS 205L1 "standard_buttons"

Please, fill in your address details:

1:House number: *ALPHA 215L10

2:Street name: *ALPHA 225L20

3:Town/City: *ALPHA 255L20

4:State: *ALPHA 275L2

5:ZIP Code: *NUMBER 277L5

*IF [?BUTTON(Q4) = 1] *PAGE OK, so we're not welcome at your house.

*IF [?BUTTON(Q4) = 2] *PAGE Do you need a place to stay?

*IF [?BUTTON(Q4) = -1] *PAGE Your house number is *?HouseNr and there is no doubt about it.

*END

Command Index

Page 280

If the respondent selects None of your business, there is no confusion whether the person is 99 years

old or selected the button with a code 99:

And same for the address, selecting None of your business:

Command Index

Page 281

6.80.1.1 See Also

*BUT .. 111

Command Index

Page 282

6.81 *USELIST
Purpose

Use answer codes from a list.

Syntax

*USELIST <n|[expression]|"name[,property=value[;property=value];…]”>

Description

This command is always used in combination with a closed question and uses a list as a substitute

for (a part of) a code list. This is similar to the *LIST command except that *USELIST has to be used

as (part of) a code list while *LIST has to be used as a question option. More than one *USELIST

may be used in a single question.

Arguments

n|expression

This is a positive integer or expression that indicates an existing list.

name

This is the name of an existing list.

Remark

This command can only be used in the context of closed coded questions.

Example 1

*LIST 1

1: Heineken

2: Amstel

3: Grolsch

4: Carlsberg

5: Tuborg

*QUESTION 1 *CODES L7 *MULTI

What brands of beer do you know?

*USELIST 1

6: Other *OPEN

7: Don’t know *NMUL

In this example, the first five codes come from a predefined code list.

Display in a question only the categories available in their region.

*LIST "Outlets"

1:Outlet 1 *PROPERTIES "nl=Y;be=N;de=N"

2:Outlet 2 *PROPERTIES "nl=N;be=Y;de=Y"

3:Outlet 3 *PROPERTIES "nl=Y;be=Y;de=N"

4:Outlet 4 *PROPERTIES "nl=N;be=N;de=Y"

5:Outlet 5 *PROPERTIES "nl=N;be=N;de=Y"

6: Outlet 6 *PROPERTIES "nl=Y;be=Y;de=Y"

*QUESTION 101 *CODES L1

Choose your country

1:Belgium *PROPERTIES "country=be”

2:Germany *PROPERTIES "country=de”

3:Netherlands *PROPERTIES "country=nl”

*TEXTVARS sCountry

*PUT sCountry [?PROPERTY(Q101, Q101, "country")]

Command Index

Page 283

*QUESTION 201 *CODES L1

Which outlet did you visit?

*USELIST "Outlets, *? sCountry=Y"

It is possible to use an expression on *USELIST.

By writing an expression after the *USELIST command and before the listname

parameter, Nfield will run the expression for each item in the list. If the expression results

in true, it will include the item in the question (see the example below):

Example 3

*LIST *Mylist

1: A *PROPERTIES “Type = a; Size = big; shape = round”

2: B *PROPERTIES “Type = b; Size = big; shape = square”

3: C *PROPERTIES “Type = c; Size = big; shape = round”

4: D *PROPERTIES “Type = d; Size = small; shape = round”

*QUESTION 1 *CODES 61L4 *MULTI

*USELIST [?property("Type") = a \ ?property("type") = b \ ?property("size") = small & ?property(“shape”) = round] "Mylist”

If we run this script, we will see that Question 1 only displays codes 1 and 4 because

the expression reads that properties (type = A or type = B or Size = small)

and shape = round. Only codes 1 and 4 meet those requirements.

For more information, please watch our Nfield Academy #44.

6.81.1.1 See Also

*LIST (definition) 176

*LIST (question option)179

*PROPERTIES ... 214

https://www.nipo.com/academy

Command Index

Page 284

6.82 *VAR
Purpose

Defines a variable name for export to NIPO DIANA / Nvision Script variables, IBM SPSS, et cetera.

Syntax

*VAR <name>

Description

This command is always used in combination with *QUESTION and a question type definition and

must be specified after these commands on the same line. Normally variable names in the NIPO

Diana / Nvision Script variable file are based on the question numbers in your NIPO ODIN

questionnaire. The *VAR command gives the possibility to create your own variable names during the

export to NIPO Diana / Nvision Script, IBM SPSS, et cetera.

Arguments

name

The variable should not contain spaces and should not start with a number.

Remark

The variable name defines the export variable name of the question in the export. This is not the

same as the variables created within your NIPO ODIN questionnaire with the *VARS and *TEXTVARS

commands.

The variable names do not have to be unique in the NIPO ODIN questionnaire, but obviously your

analysis tool will not be able to differentiate variables with the same name. The NIPO ODIN Developer

syntax check produces a Warning: Duplicate variable name message if a variable name is not

unique. This warning has no impact on running the questionnaire, and names may be changed

without consequences at a later time.

Variable names within a *REPEAT block are suffixed with a repeat number. Variable names within a

*GOSUB are suffixed with a number indicating the number of calls the routine was called until then.

In some exports, multiple-coded variables are exported as multiple dichotomy variables, where the

variable name is suffixed with a code label index number.

Example

*QUESTION 1 *CODES L1 *VAR Gender

Int. type the respondents gender

1:Male

2:Female

*QUESTION 2 *NUMBER L2 *VAR Age

Could you please tell me your age?

Export to NIPO Diana / Nvision Script creates the following variables:

*Gender *SNG 61L1: Int. type the respondents gender

 1:Male

 2:Female

*Age 62L2: Could you please tell me your age?

Export to IBM SPSS creates the following variables:

Command Index

Page 285

VARIABLE LABELS

 Gender 'Int. type the respondents gender'

 Age 'Could you please tell me your age?'

6.82.1.1 See Also

*LABEL .. 168

*REPEAT ... *ENDREP 230

*TABLE .. 264

Command Index

Page 286

6.83 *VARS
Purpose

Defines one or more numeric variables or arrays.

Syntax

*VARS <name>[,name2,...]

or

*VARS <name[size]>[,name2[size2],...]

Description

Defines numeric variables or one-dimensional number arrays. This command must be specified at

the beginning of a line. Numeric variables or arrays can be used throughout the entire questionnaire

to store data or retrieve data. In numeric variables or arrays all alphanumerical data can be stored. A

numeric variable or array initially is empty.

Arguments

name

The name of the variable or array. Multiple variables or arrays can be created with a single *VARS

command by including additional variable or array names separated by commas (name2, name3, and

so on).

size

Specifies the size of the array to be created. The variable can store up to size values.

Remark

• Only one-dimensional arrays are supported.

Example

*VARS GHELP,HHELP[2]

*QUESTION 1 *NUMBER 93 *SAVE GHELP

How many children, living at home, are there in this

household?

*QUESTION 2 *NUMBER 94L2 *SAVE HHELP[1]

What is the age of the oldest child?

*QUESTION 3 *NUMBER 96L2 *SAVE HHELP[2]

What is the age of the second oldest child?

*PAGE

There are *? GHELP children living at home.

The oldest is *? HHELP[1] years.

The second oldest is *? HHELP[2] years.

6.83.1.1 See Also

*? ... 99

*PUT... 217

*SAMPLEDATA ... 246

*SAVE (question option) 247

*TEXTVARS ... 268

Command Index

Page 287

Page 289

7. File Structures and Database Tables

7.1 Data Files
All files in NIPO ODIN are in Unicode. All files have a fixed file structure. These structures are

described in this section.

7.1.1 Closed Answers File (DAT-file)

The closed answers file (DAT-file) contains the answers to all closed questions. For each interview

(respondent) one record (line) is written in the file. The length of the records is fixed and depending

on the highest position used in the NIPO ODIN questionnaire. The first positions (fields) in each

record are reserved for the system.

Record description of the closed answers file

Position length Description

1-8 8 interview number

9-10 2 sub-questionnaire number

11-15 5 interview time in seconds

16-19 4 number of screens shown

20 1 Legacy

21-28 8 interviewer ID (CAPI only)

29-40 12 date and time last contact

41 1 0 (zero)

42-60 18 Legacy

61-... answer data

7.1.2 Open answers file (O-file)

The open-ended answers file (O-file) contains the answers to all open ended and semi-open

questions. For each open answer that is actually asked to the respondent, one record (line) is written

in the file so several records are stored for each interview (respondent). The amount of records

depends on the routing and the number of open-ended questions in the questionnaire. The length of

File Structures and Database Tables

Page 290

the records is unfixed and can be as long as the open answer that was entered. The first positions

(fields) in each record are reserved for the system.

Record description of the open answers file (default format)

position Length Description

1-8 8 interview number

9-10 2 sub-questionnaire number

11-15 5 starting position answer field in DAT-file

16-18 3 length reserved answer field in DAT-file

19-... (depending on 16-18) corresponding answer code number (or blank)

(depending on 19, etc.) text of open answer

In cases where the amount of positions used for a single open-ended answer is larger than 999, or if

your positions are larger than 999999, the O-file record format is extended:

Record description of the open answers file (extended format)

position Length Description

1-8

8 interview number

9-10 2 sub-questionnaire number

11 1 Contains * to indicate the record is extended

12-21 10 starting position answer field in DAT-file

22-31 10 length reserved answer field in DAT-file

32-... (depending on 22-31) corresponding answer code number (or blank)

(depending on 32, etc.) text of open answer

Note that the extended O-file format may be recognized by a star in position 11.

File Structures and Database Tables

Page 291

7.2 Paradata

7.2.1 Introduction to Paradata

7.2.1.1 What is Paradata

There are 2 types of data gathered during interviews:

1. Respondent data, such as respondent’s age, gender, his or her answers to interview

questions, and related recordings and media files.

2. Technical data related to the interview, such as the id of the survey, survey version, start and

end time of the interview, location, time zone, etc.

This second type of data is called Paradata.

7.2.1.2 What is Paradata Used For

Paradata is there for the Fieldwork Research executives to analyze.

Paradata can also be used by NIPO customer support personnel to help them to determine the cause

of the customer’s problem.

7.2.1.3 How to Create and Download Paradata

After the interviewers have done the interviews and uploaded their results to the Nfield Manager by

syncing (in case of CAPI surveys), or after the online interviews were done by the users (in case of

Online surveys), paradata can be downloaded from the Nfield Manager. To do that, one needs to

select the survey, for which the data is being downloaded, in the survey list, and click Download Data

button on the Details tab.

File Structures and Database Tables

Page 292

In the Create Download Data dialog that appears, one needs to deselect types of data not needed (by

default, several types of data are selected), leaving only Paradata, optionally select version of the

ODIN script you would like to download data for (the current one, or one of the previous ones), and

click on Create Download. You can give the download a distinct name or leave the default (survey

name).

One can then download the resulting zip file at the Activities page accessed by clicking the icon

on the top right of the screen.

File Structures and Database Tables

Page 293

7.2.1.4 How to Set Paradata to Auto Sync after Each Interview

Fieldwork Manager can select an option in the Nfield Manager to make sure paradata gets

automatically synced after each interview for the survey.

7.2.2 Paradata in CAPI Surveys

For different types of CAPI Surveys, the paradata types collected are also different.

Format of the paradata file is not in a true Jason file format, so please do not use a Jason viewer to

view it.

File Structures and Database Tables

Page 294

7.2.2.1 CAPI survey without Sampling Points

Below is an example of data collected for one interview. In the first column is the interview number,

in the second are the paradata labels, and in the third one are the results per label.

1 ClientInformation {"version":"1.101.000","deviceName":"santos10wifi","manufa

cturer":"samsung","operatingSystemVersion":"Android 4.2.2

(API level 17)"}

1 DeviceId Device349

1 EndReason 18

1 InterviewEndTime 2023-11-15T10:03:58.305271Z

1 InterviewRecovery [{\InterviewWriteTime\":\"2023-11-

15T10:02:35.7654550Z\",\"InterviewRecoveryTime\":\"2023-

11-15T10:03:45.9892820Z\"}]"

1 InterviewStartTime 2023-11-15T10:02:29.39838Z

1 InterviewerId 3ADjBukA

1 LastSeenQuestionId Q1003

1 LocaleId en-GB

1 SampleData []

1 SurveyETag 6.36826442524323442

1 SurveyVersion ETag(636826442524323442)

1 TestInterview FALSE

1 TimeZone CET

1 LocationInfo {"latitude":"52.50313","longitude":"5.06610","accuracy":15,"Is

GeolocationEnabled":true,"LocationValidationState":"Interv

iew"}

1

InterviewQuality 1

ClientInformation refers to hardware/software information of the device, used for the interview.

DeviceId refers to the id of the device, on which the CAPI interview was performed. Note that we are

not allowed to use the Android device ids to track users, as it is against the service agreement with

Google, so please always enter an id for the device yourself.

File Structures and Database Tables

Page 295

One can enter a device id by logging into the CAPI client as an interviewer with a supervisor role,

going to the Settings of the CAPI client, Diagnostics tab, and entering the Device ID there in the Set

Device Identity field.

Only an interviewer with a supervisor role can enter/edit/delete a device id - this field is non-

editable for regular interviewers using the device. Fieldwork Manager can give the supervisor role to

that interviewer in the Nfield Manager by toggling the Supervisor Mode icon into enabled state

and saving.

File Structures and Database Tables

Page 296

EndReason refers to the survey result codes.

InterviewStartTime, InterviewEndTime, startContactDate, endContactDate, startInterviewDate

endInterviewDate, give the time the original interview/contact/scheduled interview was started or

stopped as a standard UTC “Zulu” date/time stamp. On the other hand, all the local times (for

example, localStartInterviewDate, etc.) are the corresponding times in the time zone and the format

of the device used for the interview.

InterviewRecovery: this value only appears if the app shuts down for any reason during the interview,

and the interviewer decides to resume that interview on restarting the CAPI app. Where

InterviewWriteTime is the time the CAPI app shut down, and the InterviewRecoveryTime is time the

interview was resumed.

LastSeenQuestionId: the id of the last question viewed by the respondent This helps to analyze

survey dropouts at the respondent level.

LocaleId: the id of the locale. For the list of standard locale ids, please check here.

SurveyETag and SurveyVersion are the number of the survey version. Using these, one can download

the specific version of the questionnaire used in the interview from the Nfield Manager, as in

example in screenshot below.

https://www.science.co.il/language/Locale-codes.php

File Structures and Database Tables

Page 297

TestInterview shows whether the interview was a live one (value False) or a test one (True).

Timezone – an abbreviation for the time zone the interview is done in. For more info on time zone

abbreviations, please see this.

Location Information fields

The requirements for location information gathering can be configured by the Fieldwork Manager in

Nfield Manager by setting the Location Tracking to Active, and selecting the other relevant location

tracing options (as in the screenshot below):

- notifying interviewer to enable his/her GPS if it’s off.

- requiring him/her to validate location after each interview with accuracy to so many meters.

https://en.wikipedia.org/wiki/List_of_time_zone_abbreviations

File Structures and Database Tables

Page 298

LocationInfo always holds the best location fix in terms of accuracy. Accuracy describes the

estimated horizontal accuracy radius in meters of this location at the 68th percentile confidence

level. This means that there is a 68% chance that the true location of the device is within a distance

of this uncertainty of the reported location. Another way of putting this is that if a circle with a radius

equal to this accuracy is drawn around the reported location, there is a 68% chance that the true

location falls within this circle. This accuracy value is only valid for horizontal positioning, and not

vertical positioning.

Please note that if the interview is very short (a couple of questions, for example), the app might not

have enough time to capture and record the GPS coordinates in paradata. To make sure it will always

happen, please check the “Ask interviewer to validate location after each interview” box.

IsGeolocationEnabled - this variable can have the values true or false and tells if the geo location

is enabled on the interviewers device during the interview.

File Structures and Database Tables

Page 299

LocationValidationState (as part of LocationInfo), the possible values are:

• ‘Interview’ (which means the fix was achieved at the start of the interview);

• ‘ForceWait’ (the fix of location is coming after the interview because the Fieldwork Manager

has configured the demand to check the location fix after each interview).

InterviewQuality – interviews can be checked and marked by the Fieldwork Executive in Nfield

Manager/Quality Control tab. The numbers in this field stand for the following values:

0: interview has not been not checked,

1: approved,

2: unverified,

3: rejected

7.2.2.2 CAPI survey with Sampling Points and Quota

1 ClientInformation {"version":"1.101.000","deviceName":"sant

os10wifi","manufacturer":"samsung","ope

ratingSystemVersion":"Android 4.2.2 (API

level 17)"}

1 DeviceId Device349

1 EndReason 18

1 InterviewEndTime 2019-01-09T15:40:01.227448Z

1 InterviewStartTime 2019-01-09T15:39:00.0000000Z

1 InterviewerId 3ADjBukA

1 LastSeenQuestionId Q1003

1 LocaleId en-GB

1 Quota [{"levelId":"50507613-218a-48f5-b137-

652dde8a7ff8","path":"Gender,Male"},{"le

velId":"356934ad-7f90-46af-930f-

532fa36de4b8","path":"Age,18 - 24

years"}]

1 QuotaVariables

[{"Gender":" Male"},{"Age":" 18 - 24

years"}]

1 SamplingPointId 1

1 SurveyETag 6.36826442524323442

1 SurveyVersion ETag(636826442524323442)

1 TestInterview FALSE

File Structures and Database Tables

Page 300

1 TimeZone CET

1 LocationInfo {"latitude":"52.50313","longitude":"5.0661

0","accuracy":15,"IsGeolocationEnabled":t

rue,"LocationValidationState":"Interview"

}

1 SampleData [{"name":"Gender","value":"

Male"},{"name":"Age","value":" 18 - 24

years"}]

1

InterviewQuality 1

The extra fields in this type of survey (in addition to the ones in the previous type) are:

Quota, QuotaVariables, SampleData and SamplingPointId refer to the quota and sampling points

covered by the interview.

Quota specifies the levelid (a GUID value) of the quota selected, as well what quota was selected

(path).

QuotaVariables are the Odin script variables entered in the quota frame (as in example below):

SamplingPointId is id of the sampling point from the Nfield Manager’s survey Sample page (see

example below).

File Structures and Database Tables

Page 301

7.2.2.3 CAPI survey with Sampling Points and Addresses

1 Address {"surveyId":"d05a7b55-28a4-401f-bda1-

5820bbb8179e","samplingPointId":"2","ad

dressId":"Address002","addedDate":"2023

-11-

06T08:20:48Z","appointmentDate":null,"l

ocalAppointmentDate":null,"appointmen

tEndDate":null,"localAppointmentEndDat

e":null,"lastContactDate":null,"sampleDat

a":[{"name":"gender","value":"Male"},{"na

me":"age","value":"Below

35"}],"contacts":[{"addressId":"Address00

2","samplingPointId":"2","surveyId":"d05a

7b55-28a4-401f-bda1-

5820bbb8179e","contactId":"d616eab5-

150e-4a58-be9a-

959305fcab23","interviewerId":"DTIw3fgY"

,"startContactDate":"2023-11-

06T08:40:19.179133Z","localStartContactD

ate":"11/6/2023 9:40:19

AM","startContactLocation":{"latitude":"5

2.50313","longitude":"5.06610","accuracy":

16,"IsGeolocationEnabled":true},"startInt

erviewDate":"2023-11-

06T08:40:19.179133Z","localStartInterview

Date":"11/6/2023 9:40:19

AM","endInterviewDate":"2023-11-

06T08:40:29.292375Z","localEndInterview

File Structures and Database Tables

Page 302

Date":"11/06/2023

09:40:29","endContactDate":"2023-11-

06T08:40:29.292375Z","localEndContactDa

te":"11/06/2023

09:40:29","responseCode":18,"isFinal":tru

e}],"details":"Pigeon Place 22,

Groningen"}

1 AddressId ccc2e21b-f323-4377-9289-f16e42605623

1 ClientInformation {"version":"1.101.000","deviceName":"sant

os10wifi","manufacturer":"samsung","ope

ratingSystemVersion":"Android 4.2.2 (API

level 17)"}

1 DeviceId Device349

1 EndReason 18

1 InterviewEndTime 2019-01-09T15:40:01.227448Z

1 InterviewStartTime 2019-01-09T15:39:00.0000000Z

1 InterviewerId 3ADjBukA

1 LastSeenQuestionId Q1003

1 LocaleId en-GB

1 Quota [{"levelId":"RootLevelId","path":""}]

1 QuotaVariables []

1 SampleData [{"name":"Gender","value":"

Male"},{"name":"Age","value":" 18 - 24

years"}]

1 SamplingPointId 3

1 SurveyETag 6.36826442524323442

1 SurveyVersion ETag(636826442524323442)

1 TestInterview TRUE

1 TimeZone CET

1 LocationInfo {"latitude":"52.50313","longitude":"5.0661

0","accuracy":16,"IsGeolocationEnabled":t

rue,"LocationValidationState":"

ForceWait"}

1

InterviewQuality 1

Address is added in this type of CAPI survey.

File Structures and Database Tables

Page 303

Format of the address paradata is not in a true Jason file format. There is a way to convert paradata

to a classic contact log using the Nfield Tool. For more information on this, please contact our

helpdesk.

Address contains the following fields that are specific to the address for which the interview was

done (below, with example values):

1. "surveyId":"c78beb14-09ff-45cb-a34f-bb1717878403",

2. "samplingPointId":"bb83cd8b-0b22-4c9c-bf01-d7c1d830d7d8",

3. "addressId":"ccc2e21b-f323-4377-9289-f16e42605623",

4. "addedDate":"2019-01-09T15:39:45.785958Z",

5. "appointmentDate": "2019-01-17T12:15:00Z",""

6. "localAppointmentDate": ”1/17/2019 1:15:00 PM",

7. "appointmentEndDate": "2019-01-17T12:30:00Z”,

8. “localAppointmentEndDate": "1/17/2019 1:30:00 PM",

9. "lastContactDate": "2019-01-09T15:39:24.364Z"

10. "sampleData":null,

11. "contacts":[{

1) "addressId":"ccc2e21b-f323-4377-9289-f16e42605623",

2) "samplingPointId":"bb83cd8b-0b22-4c9c-bf01-d7c1d830d7d8",

3) "surveyId":"c78beb14-09ff-45cb-a34f-bb1717878403",

4) "contactId":"8a4dc2e1-6df1-4c0b-85e0-d24b5b2efad0",

5) "interviewerId":"3ADjBukA",

6) "startContactDate":"2019-01-09T15:39:24.364Z",

7) "localStartContactDate":"09/01/2019 16:39:24",

8) "startContactLocation":{

a. " IsGeolocationEnabled ":true,

b. "latitude":52.344288,

c. "longitude":4.912397,

d. "accuracy":30},

9) "startInterviewDate":"2019-01-09T15:39:47.228823Z",

10) "localStartInterviewDate":"09/01/2019 16:39:47",

11) "endInterviewDate":"2019-01-09T15:40:00.158149Z",

12) "localEndInterviewDate":"09/01/2019 16:40:00",

13) "endContactDate":"2019-01-09T15:40:00.158149Z",

14) "localEndContactDate":"09/01/2019 16:40:00",

15) "responseCode":18,

16) "isFinal":true}],

12. "details":"5 Kalvinstraat, Rotterdam"}

mailto:helpdesk@nipo.com

File Structures and Database Tables

Page 304

Contacts describes the details of the contacts made by the interviewer at the address, including an

initial contact, and the follow up appointment for a new interview time/date, if any.

IsFinal is set to True if this is the final interview at this address (whether successful or a definitely

failed one), or to False if no definite rejection or success were achieved during the interview (for

example, the respondent did not open the door).

Address details refers to address description as entered when address was created.

7.2.2.4 CAPI survey with Sampling Points, Quota and Addresses

1 Address {"surveyId":"c78beb14-09ff-45cb-a34f-

bb1717878403","samplingPointId":"bb83c

d8b-0b22-4c9c-bf01-

d7c1d830d7d8","addressId":"ccc2e21b-

f323-4377-9289-

f16e42605623","addedDate":"2019-01-

09T15:39:45.785958Z","appointmentDate":

null,"localAppointmentDate":null,…

1 AddressId ccc2e21b-f323-4377-9289-f16e42605623

1 ClientInformation {"version":"1.101.000","deviceName":"sant

os10wifi","manufacturer":"samsung","ope

ratingSystemVersion":"Android 4.2.2 (API

level 17)"}

1 DeviceId Device349

1 EndReason 18

1 InterviewEndTime 2019-01-09T15:40:01.227448Z

1 InterviewStartTime 2019-01-09T15:39:00.0000000Z

1 InterviewerId 3ADjBukA

1 LastSeenQuestionId Q1003

1 LocaleId en-GB

1 Quota [{"levelId":"50507613-218a-48f5-b137-

652dde8a7ff8","path":"Gender,Male"},{"le

velId":"356934ad-7f90-46af-930f-

532fa36de4b8","path":"Age,18 - 24

years"}]

1 QuotaVariables [{"Gender":" Male"},{"Age":" 18 - 24

years"}]

File Structures and Database Tables

Page 305

1 SampleData [{"name":"Gender","value":"

Male"},{"name":"Age","value":" 18 - 24

years"}]

1 SamplingPointId 3

1 SurveyETag 6.36826442524323442

1 SurveyVersion ETag(636826442524323442)

1 TestInterview TRUE

1 TimeZone CET

1 LocationInfo {"latitude":"52.50307","longitude":"5.0660

7","accuracy":20,"IsGeolocationEnabled":t

rue,"LocationValidationState":"Interview"

}

1

InterviewQuality 1

7.2.3 Paradata in Online Surveys

For Online surveys much less paradata gets collected.

1 Contacts [{"StartTime":"2024-11-23T18:26:14.8864771Z","EndTime":"2024-11-

23T18:28:10.1895501Z","ResponseCode":18,"IsFinal":true,"SuspendR

eason":""}]

1 InterviewStartTime 2019-01-10T13:16:39.0910529Z

1 LastSeenQuestionId Q1003

1 Result Successful

1 SurveyETag 6.36827229492480992

1 SurveyVersion ETag(636827229492480992)

1 TestInterview FALSE

1 EndReason 18

1 InterviewQuality 1

LastSeenQuestionId: the id of the last question viewed by the respondent This helps to analyze

survey dropouts at the respondent level.

EndReason refers to the survey response codes.

Result is the code description for the code in EndReason.

File Structures and Database Tables

Page 306

The following paradata parameters appear if an interview was reset (WasResetTo value appears and

is set to the value of the InterviewId of the replacement interview) or the interview data was deleted

(IsDeleted appears and is set to TRUE). These parameters only appear when dropped out interviews

are included in the download package.

1

WasResetTo 10

2 IsDeleted TRUE

7.2.4 Paradata for the Quota Out (both Online and CAPI Surveys)

When a *STRAT command check shows that stratum reached its maximum target and the responded

is stratted out, we will now add a line to the paradata that describes the quota cells relevant for this

interview, starting from with the total target, and then following the branch of the tree up to the first

quota cell that fails the *STRAT check. Only the result of the last failed *STRAT check is stored.

Example

Let's assume we have the following quota frame:

File Structures and Database Tables

Page 307

The first interviewer will answer region: North and drink: Tea. This interview will be completed

successfully.

The second interviewer will also answer region: North and drink: Tea. This interview will fail the

*STRAT because the target for Tea in North is 1 which is already met because of the first interview.

In the paradata the following entry will be made:

2 StratificationRejectionReason

{Outcome":"NotAllowed","Context":[{"Variable":"Drink","Level":"Tea"},{"Variable":"Region","Level":"North"}]}"

Let's say the third interviewer answers region: North and drink: Coffee. This is allowed because the

max target for that cell is 2, which it has not reached yet.

If the fourth interviewer answers region: North and drink: Coffee, the interview will not pass the quota

check. Not because Coffee in North has reached its target, but because region: North has reached its

max target (since we have two completed interviews for region North).

In the paradata the following entry for this interview will appear:

4 StratificationRejectionReason {Outcome":"NotAllowed","Context":[{"Variable":"Region","Level":"North"}]}"

You can see here that the context does not include the drink level, as the quota evaluation already

failed on the parent level (region: North).

Let's say the fifth interviewer answers region: South and drink: Tea. This is allowed and the interview

will be completed successfully.

The sixth interviewer will also answer region: South and drink: Tea. But this time it will fail, as the

total target on the survey has been reached.

This interview will have the following entry in the paradata:

6 StratificationRejectionReason {Outcome":"NotAllowed","Context":[]}"

 It has no context, because the evaluation already failed on the target set in the survey.

7.3 Audit Trail

7.3.1 Introduction to Audit Trail

This feature is designed to help users get more insights in what the respondent has done during an

interview.

File Structures and Database Tables

Page 308

• The minimum version of CAPI app is 2.1.

• The Audit Trail logs will be delivered in the csv format with the following name:

[surveyname]-auditlog.csv

• The Audit Trail logs will be downloaded together with the Paradata file (when Paradata

option is selected in the Data Download dialog – see previous chapter).

7.3.2 Overview of an Audit Trail file

Below is an example of a downloaded interview Audit Trail log:

Location Versions Extern

alId

{"latitude":"53.50325","longitude":"6.06631","accuracy":18,
"IsGeolocationEnabled":true}

{"Engine":"23.13.0.0","Parse
r":"1.16.017"}

Q1

{"latitude":"53.50325","longitude":"6.06631","accuracy":18,
"IsGeolocationEnabled":true}

{"Engine":"23.13.0.0","Parse
r":"1.16.017"}

{"latitude":"53.50325","longitude":"6.06631","accuracy":18,
"IsGeolocationEnabled":true}

{"Engine":"23.13.0.0","Parse
r":"1.16.017"}

 {"Engine":"23.13.0.0","Parse
r":"1.16.017"}

Q4

 {"Engine":"23.13.0.0","Parse
r":"1.16.017"}

Interviewnumber - number of the interview. The log file is ordered on this column first and then on

SequentialOrder.

SequentialOrder - the position of the action taken (by the respondent) from beginning to end. The

sequential number reflects in which order the question were shown to this particular respondent in

the interview. The number might not be the same for this question in another interview (with a

different respondent, who is shown questions in a different order).

QuestionId - stores the QuestionId from the script:

Interview

number

Sequential

Order

Question

Id
ElapsedTime

NavigationActio

n
QuestionType QuestionVariable ActionDateTime

1 1 P228 2.48 Next Page Household 2020-03-17T14:52:23.5934980Z

1 2 Q10 4.81 Next Question Status 2020-03-17T14:52:28.5195050Z

1 3 Q20 4.61 Next Question Wealth 2020-03-17T14:52:33.2808470Z

1 4 R1Q2404 3.45 Back Matrix Household 2020-03-17T14:52:36.8565360Z

1 5 Q20 4.77 Next Question Transport 2020-03-17T14:52:41.7367750Z

File Structures and Database Tables

Page 309

• Q: We store the QuestionIds (as Q) only of the questions that are shown to and can be filled

in by the respondents (so, for example, *DUMMY questions are not shown). The number after

Q is the question number in the ODIN script.

• P: A *PAGE is also stored (as P). A number is assigned to each page.

• R: For a repeat question or a *MATRIX (stored as R). In case of a *MATRIX, we are storing the

last question number within the matrix or block that a respondent could have filled in.

• S: for a subroutine. The number next to S (such as S1) shows which time this subroutine has

appears in the script, and not the order in which the respondent has seen this subroutine. So

S1 means this sub has appeared the 1st time in the script, S2 – the 2nd time in the script, even

thought for this particular respondent this could be the 1st time this sub is called, etc.

As an example, in this script snippet we store Q2404:

*MATRIX 3 Q230W *FIELD 70L42 *UIRENDER "Mixed"

*? v240label

*QUESTION 2401 *ALPHA 1L12

Name

*QUESTION 2403 *CODES 13L1 *UIRENDER "Select"

Age Range

1:<18

2:18-24

3:25-34

4:35-44

5:45-54

6:55-64

7:65+

*QUESTION 2404 *CODES 14L1 *UIRENDER "Horizontal"

Driver's license

1:Yes

2:No

*ENDMATRIX

ElapsedTime

This is the time in seconds with 2 decimal places.

• For a suspend via script we hardcode a 0 for ElapsedTime.

• For a suspend via app Back button option we store the actual screen time.

Please note that if you sum up all the elapsed times and compare them with the total time of the

interview (obtained as a difference between the InterviewStartTime and InterviewEndTime from

paradata), the total time of the interview will be a little bit higher because it also includes loading

time of the pages and processing that takes place between questions.

NavigationAction

The action done by the interviewer to move to the next page:

• Pressed Next button (Next)

• Pressed Back button (Back)

• Suspend (interview is suspended via the app’s Back button or via script).

File Structures and Database Tables

Page 310

QuestionType

The following question types are recoded:

• QUESTION (ALPHA/NUMBER/CODES/OPEN/FORM)

• PAGE

• BLOCK

• MATRIX

• There is a special case when an interview gets suspended via script: in that case the

QuestionType will be empty.

QuestionVariable

If you are using the command LABEL in your questionnaire it will fill this column with the value you have

put there for the specific question.

ActionDateTime

The time stamp of the action, in UTC. The format is the same as date/time in the paradata file. If you

would like to get a complete picture of your data quality, please also look at the paradata, which also

contains the local time stamp and the location fix for each interview.

Location (CAPI surveys only)

GPS fix (location) of the question. It is stored if the survey manager turns on continuous location

tracking setting for a CAPI survey in Nfield Manager.

Versions

Versions of the engine and the parser .

• The engine is the Nfield logic engine that runs the interview. It presents the first question,

and then depending on the script and the answers, calculates what to show next, etc.

• The parser is the syntax checker that is used in the Odin Developer and the Nfield Manager.

ExternalQuestionId

Question identifier that was added using an *ID command.

7.3.3 Suspending an Interview

There are two ways of suspending an interview during fieldwork. They will result in different entries

in the Audit Trail log.

1. Suspend via the app’s Back button

We store an entry in the audit log when user clicks on "Save and Suspend". Once the user resumes

the interview, the stopwatch will start counting again. We won't store the time between the

suspension and the resume. Here is an example of an scenario and the stored Audit log:

• Start an interview. You are on Q50.

File Structures and Database Tables

Page 311

• Wait 4.23 seconds.

• Click Next. You are on R5Q701.

• Wait 8.31 seconds.

• Suspend (using the app Back button). You are outside the interview.

• Wait 10 minutes.

• Resume. You are on R5Q701.

• Wait 7.69 seconds.

• Click Next. You are on Q3 (next question).

2. Suspend via script

When you suspend via script we store two actions:

• "Next", because they clicked next button.

• And "Suspend", because the interview is suspended.

As the suspend is triggered automatically immediately after the Next, the elapsed time would be less

than 1 second. So the value will be hard-coded as 0. Here is an example of an scenario and the stored

Audit log:

• Start an interview. You are on Q50.

• Wait 4.23 seconds

• Click Next. You are on R5Q701.

• Wait 8.31 seconds.

• Select in the questionnaire the response code which allows appointment. You are outside

the interview.

• Wait 10 minutes.

• Resume. You are on R5Q701.

• Wait 7.69 seconds.

• Click Next. You are on Q3 (the next question).

Interview

number

Sequenti

alOrder
QuestionId ElapsedTime

NavigationActio

n
QuestionType ActionDateTime

1 8 Q50 4.23 Next Block 2020-03-17T14:52:56.9594840Z

1 8 R5Q701 8.31 Suspend Matrix 2020-03-17T14:53:05.3915940Z

1 8 R5Q701 7.69 Next Matrix 2020-03-17T15:04:16.9738380Z

Interview

number

Sequenti

alOrder
QuestionId ElapsedTime

NavigationActio

n
QuestionType ActionDateTime

1 8 Q50 4.23 Next Block 2020-03-17T14:52:56.9594840Z

1 8 R5Q701 8.31 Next Matrix 2020-03-17T14:53:05.3915940Z

1 8 R5Q701 0 Suspend 2020-03-17T14:53:05.3915940Z

1 8 R5Q701 7.69 Next Matrix 2020-03-17T15:53:16.9738380Z

File Structures and Database Tables

Page 312

Note that the QuestionType is empty in this case, and the elapsed time is hardcoded with zero.

7.3.4 Killing the Nfield CAPI app During Interview

For a hard quit (application killed or crashed), we don't add the entry for "Suspend". The elapsed time

between the previous action that was triggered and the time the application was killed will be lost. If

the interview has the setting "Autosave Interviewing" enabled, the interviewer will be able to restore

the interview. In this case the interview will be restarted from the last selected question (one screen

earlier than in case of a suspension with the exit dialog). Once the interview is restored, the

stopwatch will start counting again. Here is an example of an scenario and the stored Audit log:

• Start an interview. You are on Q1.

• Wait 2 seconds

• Click Next. You are on Q2.

• Wait 3 seconds.

• Hard kill the application. You are outside CAPI app.

• Wait 10 minutes.

• Restart the CAPI client and restore the interview. You are on Q1.

• Wait 4 seconds.

• Click Next. You are on Q2.

Note: For more detailed information on the Audit Trail feature, you can watch an Academy training

session at https://youtu.be/Ac_sYW5xKCM.

7.4 Sample Table

7.4.1 Introduction to Sample Table

In Nfield you can upload a sample record file both CAPI and Online surveys. For each sample record,

you can specify variables that you would then pre-fill before the survey starts, and use during the

interview.

You can specify up to 800 variables for each sample record.

Interview

number

Sequenti

alOrder
QuestionId ElapsedTime

NavigationActio

n
QuestionType ActionDateTime

1 1 Q1 2 next Block 2020-03-16T10:54:48.1238970Z

1 2 Q1 4 next Block 2020-03-16T11:04:45.1259770Z

https://youtu.be/Ac_sYW5xKCM

File Structures and Database Tables

Page 313

You need to save sample record file as an .xlsx, .xls or a .csv. This file should contain respondent keys

(RespondentKey field) in the first column. All the other variables should be stored in columns named

the same as the variables in the ODIN script.

Below is an example of a sample record file. The ODIN script for this survey could have variables

FirstName, LastName, Email, or Age, but will not necessarily have (all of) these.

RespondentKey FirstName LastName Email Age

10 Mickey Mouse m.mouse@wdisney.com

25

20 Minny Mouse mi.mouse@wdisney.com

23

30 Duffy Duck d.duck@wdisney.com

27

This file can be then uploaded to your survey in the survey’s Sample and Invitations/Sample tab:

One can perform the following actions on imported sample records (both on individual records,

filtered subsets or all the records): Clear Profile, Block, Reset. Delete can also be performed, but see

details below.

mailto:m.mouse@wdisney.com
mailto:mi.mouse@wdisney.com
mailto:d.duck@wdisney.com

File Structures and Database Tables

Page 314

1. Clear Profile: clears all the Personally Identifiable Information (PII) data for the selected

record(s) from the database. This is a way to keep the interview(s), but to anonymize the

survey.

2. Delete: delete the interview as well. The whole interview data gets deleted, not only the PII

data for it. There will still be sample record left evidencing that there was an interview, with

an interview status, and the result Deleted. If you do it on a single record it will delete all the

interview data, but if you do it on the subset of records or on all records, it will only delete

records that are unused. If your selection contains even 1 used record, it will not delete

anything.

3. Reset: creates a new record (a copy of the record) with a blank state (Not Used), and the

interview can be still run for this respondent key. The old record stays, with status Reset. One

can only reset records that are in a definite state (successful or screened-out interviews) and

have a respondent key. To protect you from accidentally resetting an appointment, you

cannot reset a dropped-out interview.

4. Block: you can block certain records, and if one tries to run an interview on the blocked

respondent keys, the system will not allow it giving a message that the respondent is

blocked. You can still send invitations to the blocked respondent.

File Structures and Database Tables

Page 315

7.4.2 Rules for Sample Table Headers

It is not allowed to create custom fields (sample table headers) with the same name as system fields

(minus the TT):

- TTInterviewNumber

- TTStatusCode

- TTAvailabilityCode

- TTID

- TTClosedAnswerDataInBlob

- TTOpenAnswerDataInBlob

- TTContactTime

- TTLanguage

- TTDataUploadTime

- TTIsCounted

- TTSamplingPointId

- TTAddressId

- TTInterviewQuality

- TTRespondentKey

- TTResetRespondentKey

- TTETag

- TTImportDate

- TTImportedBackgroundData

- TTEmailUnsubscribed

- TTIsDeleted

- TTAddressDetails

- TTLocationTracking

- TTTelephoneNumber

- TTBlockedUntil

- TTUserModificationDate

-TTStartLink

So, for example, for a language column header, please do not use “Language” as it is the same as

“TTLanguage” minus “TT”, but use “Lang” or “UserLanguage” or similar.

Also, column names that start with “TT”, special characters or size greater than 100 characters are not

allowed.

The delimiting character for the sample columns should be unique and the heading line

should be present. Only comma, semi colon and tab characters are allowed as delimiters,

and only one of them can be used in a particular spreadsheet. This applies to both the

sample uploaded using the Nfield Manager as well as through the API.

File Structures and Database Tables

Page 316

System columns are case sensitive. So ‘AddressDetails’ will map to the TTAddressDetails system field,

while ‘addressDetails’ for instance does not. Non-system columns are case-insensitive. There cannot

be both a column ‘MyColumn’ and a column ‘myColumn’ in the sample table. Both columns map to

the same ODIN script variable ‘*VAR mycolumn’, or ‘*VAR MyColumn’, or ‘*VAR myColumn’, or

‘*SAMPLEDATA MyCoLuMn’.

Note: A special case. If you upload sample with a column called TelephoneNumber (must match

exactly), it is written to TTTelephoneNumber, and you must use TTTelephoneNumber in the script. For

CATI this column is required when uploading sample.

7.4.3 Dealing with Customer Personally Identifiable Information (PII) data

If you want to be able to delete Personally Identifiable Information (PII) data independent from the

other interview data (the non-PII interview data), for instance, to anonymize surveys in order to meet

EU GDPR PII regulations, you need to store this PII data ONLY in the sample table.

In the NIPO ODIN Scripter Basic Course we show how to script this.

We also have the Sample Data Obfuscation feature to protect the PII data inside the Nfield Manager.

It works as follows:

• Default Protection: Users with the SampleRecord.read permission will not see the original

sample data in the sample table. Instead, they will be shown obfuscated text represented by

a string of four characters, “xxxx,” to ensure that sensitive information is kept secure.

• Requesting Access to View Data: If a user with SampleRecord.read permission needs to view

the actual sample data, they can submit a request to a user with SampleRecord.write

permission. This user will have the ability to unmask or reveal the original sample data.

You can unmask sample data for a specific number of days using a calendar setup:

1. Go to the Nfield Manager’s Sample tab and click on the Mask, Unmask Columns button.

2. Set the Mask columns toggle off (to unmask).

3. Choose a date and time to mask the sample data again from that specific date on.

File Structures and Database Tables

Page 317

For more information on how NIPO meets GDPR reequipments, please see the NIPO Academy video

here.

7.4.4 Blacklist

For Nfield Online surveys you can maintain a blacklist. This is a list of respondents that have opted-

out from participating in your surveys. Nfield allows you to list up to 1 million respondents in your

blacklist. Please contact NIPO support at helpdesk@nipo.com if you have a requirement to exceed

these limits.

7.4.5 Locations of Nfield Services

Below are the storage locations in Azure Cloud of Nfield Services per geographical area at

the time of the writing.

We have primary storage location and geo-replication location (for back-ups).

**** EU deployment ****
Primary: EU west (Netherlands)

Secondary: EU North(Ireland)

PowerBi (reporting): EU west (Netherlands)

Local storage UK
Primary: UK south (London)

Secondary: UK west (Cardiff)

https://youtu.be/V9c058cZq3s

File Structures and Database Tables

Page 318

PowerBi(reporting): N/A

***** AM (Americas) deployment ****
Primary: East US (Virginia)

Secondary: West US (California)

PowerBi(reporting): East US(Virginia)

Local storage Canada
Primary: Canada Central (Toronto)

Secondary: Canada East (Quebec)

PowerBi(reporting): N/A

**** APAC (Asia Pacific) deployment ****
Primary: East Asia (Hong Kong)

Secondary: South East Asia (Singapore)

PowerBi(reporting): South East Asia (Singapore)

Local storage Singapore
Primary: South East Asia (Singapore)

Secondary: N/A (only 1 datacenter in Singapore, so no geo-replication

available)

PowerBi(reporting): South East Asia (Singapore)

Local storage Australia (for Australia and New Zealand).

Different datacenters for geo-replication of storage and databases due to (un)availability of

some services in the different datacenters.

Primary: Australia Central (Canberra)

Secondary storage: Australia Central2 (Canberra)

Secondary Db: Australia East (Victoria)

PowerBi(reporting): N/A

**** CHINA deployment ****
Primary: China North (Beijing)

Secondary: China East (Shanghai)

PowerBi (reporting): N/A

7.4.6 Local Data Storage Possibilities

To comply with some countries’ data storage rules, Nfield offers a possibility to store sample and

survey data locally (inside the country), instead of in the Cloud. Local data storage options and their

costs depend on the local circumstances. For more information please see this NIPO blog item.

https://www.nipo.com/Blog/Articles/Local-Data-Storage-Compliance-Around-the-World

File Structures and Database Tables

Page 319

Interview Simulator

Page 320

8. Interview Simulator
Interview Simulator feature in the Nfield Manager allows you to generate simulated

random data for the survey, so that you can check if the questionnaire script and the data

are valid prior to starting fieldwork.

How is this feature different from NIPO ODIN Developer's dummy data generation?

The Interview Simulator supports quotas, stratification, *GETLFQLIST, reports, and other

functionalities, some of which are not available in the NIPO ODIN Developer. With

interview simulator hints you can steer randomization. Moreover, unlike the ODIN

Developer's dummy data, the Interview Simulator runs within the Nfield Manager.

8.1 Running an interview simulation

Running simulations (simulated interviews) is only possible for surveys that have not been

started yet, but have a published questionnaire.

For such a survey, on the Test and Launch tab, we can choose the Simulate Interviews

option:

On this page you can say how many simulated interviews you would like to generate, if you would like

the reporting to be also enabled, and if you want to use the pre-uploaded sample from the survey.

You can also upload the sample here that will be only used for the simulation (will not be uploaded

to the actual survey).

After clicking on Start Simulation, the simulation starts running, and it's progress is shown in the

Activities tab. When done, you can click on View Simulation in the Activities tab to be taken to the

results. Your original survey is still in the same state (not started, no interviews have been run), and a

copy of the survey with the simulated run has been placed into the tab Tests where you can look at it:

Interview Simulator

Page 321

Note:

• Please remember that when running simulations, you are still using the same system

resources as are used to run real interviews. So please be responsible about how many

simulations you create.

Questions and answers

1. How many interviews can an interview simulator generate at once?

We are allowing max 500 interviews per run.

2. For a particular survey, how many times can you run an interview simulator?

There are no limitations per survey, but only the data and simulator survey for the the last

saved. Each new run you do removes the previous run. So, only the most recent copy of

survey and data is stored.

3. On which surveys can I run the interview simulator?

Only on the surveys that are published, and for which fieldwork has not been started.

4. How to run the simulation on surveys for which the fieldwork has already started?

You need to stop the fieldwork to run the simulation.

5. Would quotas and stratification work?

Yes.

6. Can we download the data from the interview simulator survey?

Yes- from the tab Monitor fieldwork->Progress->Download data or through the API.

7. Are the results of an interview simulator survey available in reports?

Yes, if you have checked that option on creating the simulation.

8. Can we run an interview simulator survey based on sample uploaded?

Yes, either using the original sample from the script, or uploading specific sample for the

simulation (in the Simulate Interviews dialog).

9. How long is the interview simulator survey is available?

Interview Simulator

Page 322

An interview simulator survey will be deleted 10 days from the creation date of simulation

survey.

10. Is simulated interviews available for CAPI surveys?

Yes, you can create interview simulations for the CAPI surveys, but like all test interviews for

CAPI started in the Nfield Manager, they will run online.

8.2 Hints

8.2.1 What are hints for interview simulation?

Hints are an external file to provide predefined answers.

For example, if you have a screener question where the majority of the options will lead to screen-

outs, you can use hints to make sure that a decent amount of interviews will still pass this question.

To do that, you can specify the predefined responses using the Hints file.

• Hints (an external file) is optional.

• All question types are supported by hints.

• Hints are used to steer the simulated interview in a more intelligent

way.

• The simulation will generate the answers based on the inputs specified in the hints file.

• If no hints are provided for a question, the answers will be randomly generated.

8.2.2 When to use Hints?

1. If the questionnaire script contains specific validation that a random generator will hit upon

very seldom. For instance, an email address validation.

2. If you want to specify any predefined responses to control the routing.

8.2.3 Example

JSON Schema for the hints, and an example hints file

JSON schema JSON example

namespace
Nfield.Manager.Surveys.Interactions.Survey.Simulat

ions

{
 internal static class HintsValidationSchema

 {

 public static string Schema => @"
{

{
 "hintsName": "Demo",

 "hints": [
 {

 "questionId": "Q1",

 "answers": [

Q1 is a multi-choice question.

Interview Simulator

Page 323

 ""$schema"": ""http://json-schema.org/draft-

07/schema#"",
 ""title"": ""Interview Simulator hints definition"",

 ""type"": ""object"",

 ""additionalProperties"": false,
 ""properties"": {

 ""hintsName"": {

 ""type"": ""string""

 },
 ""hints"": {

 ""type"": ""array"",

 ""items"": {
 ""type"": ""object"",

 ""additionalProperties"": false,

 ""properties"": {

 ""questionId"": {
 ""type"": ""string""

 },

 ""noAnswer"": {
 ""type"": ""integer"",

 ""minimum"": 0,

 ""maximum"": 100
 },

 ""button"": {

 ""type"": ""integer"",

 ""minimum"": 0,
 ""maximum"": 100

 },

 ""buttonAnswers"": {
 ""type"": ""array"",

 ""items"": {

 ""type"": ""object"",
 ""additionalProperties"": false,

 ""properties"": {

 ""answer"": {

 ""type"": ""integer""
 },

 ""weight"": {

 ""type"": ""integer"",
 ""minimum"": 1

 }

 },

 ""required"": [
 ""answer"",

 ""weight""

]
 }

 },

 ""maxVisits"": {
 ""type"": ""integer"",

 ""minimum"": 1

 },

 {

 "answer": "1,2",

 "weight": 100

 },

 {

 "answer": " 3",

 "weight": 50

 },
 {

 "answer": "4",

 "weight": 50

 }

]

 },

 {

"questionId": "Q2",

 "answers": [

 {

 "answer": "1",

 "weight": 100

 },

 {

 "answer": " 2",

 "weight": 50
 },

 {

 "answer": "3",

 "weight": 50

 }

]

 },

 {

 "questionId": "Q3",

 "answers": [

 {

 "answer": "10",

 "weight": 25

 },
 {

 "answer": "20",

 "weight": 25

 },

 {

 "answer": "40",

 "weight": 25

 },

Q2 is a single-choice

question.

Q3 is a numeric question.

http://json-schema.org/draft-07/schema
http://json-schema.org/draft-07/schema

Interview Simulator

Page 324

 ""excludedAnswers"": {

 ""type"": ""string""
 },

 ""answers"": {

 ""type"": ""array"",
 ""items"": {

 ""type"": ""object"",

 ""additionalProperties"": false,

 ""properties"": {
 ""answer"": {

 ""type"": ""string""

 },
 ""weight"": {

 ""type"": ""integer"",

 ""minimum"": 1

 }
 },

 ""required"": [

 ""answer"",
 ""weight""

]

 }
 }

 },

 ""required"": [

 ""questionId""
]

 }

 }
 },

 ""required"": [

 ""hintsName"",
 ""hints""

]

}";

 }

}

 {

 "answer": "60",

 "weight": 25

 }

]

 }

]
}

8.2.4 Properties

Name Description Type Additional information

hintsName The name to identify the hints. String This property is required.

Hints An array of hint objects. Where
each element describes a single

question hint.

Array This property is required.

questionId This is a unique identifier of a String This property is required.

Interview Simulator

Page 325

question as it is defined in the

questionnaire script.

noAnswer Specifies a percentage of non-

response answers. Possible

value is from 0 to 100.

Number This property is optional.

This can be used on a question which is non-

mandatory(*NON).

min=0
max=100

Answers An array of answer objects. The

answer object has an answer
definition and a weight

property.

Array This property is required.

Answer The answer definition. This can

be a single answer or an answer
group or an answer range.

String This property is required.

--
A single answer is a number or a text that

specifies the desirable answer.

For example:
"answer": "3" is an answer to a numeric

question or to a category question,

depending on question type.

"answer": "text" is an answer to an alpha or
open question.

--

An answer group is a sequence of answers
separated by comma.

The group is only allowed for category

question type which is a multi-choice.

"answer": "2,3,5" selects multiple

categories.

--
An answer range is a continuous sequence

where the start and the end are specified. A

dash character is used as a range indicator.
The range is only allowed for category

question type which is a multi-choice.

"answer": "3-7" selects a category range.

Weight The weight of the answer. This

is a number value to specify a
probability of the answer.

Number This property is required.

For more information

For more information on this feature, please watch our NIPO Academy session 46.

https://youtu.be/4iMY7wrTYdY?feature=shared

Interview Simulator

Page 326

8.2.5 Excluding specific response codes

Page 327

8.2.6 Total sum value for the question

It is possible to specify the total sum value for the question in the Hints file. The values are

distributed randomly for each row until they add up to the total sum specified in the Hints.

Page 329

9. Default Template for Nfield System
Rendering Options

The default template for Nfield comes with a small but useful set of rendering options that are

available in all templates. These options have been built-in because they require access to specific

hardware controls on the tablet or mobile phone. The system rendering options support the

following features:

• Capturing photos and using the device's camera.

• Capturing the respondent's answer to a question using the device's microphone.

• Play a sound, music or video clip using the device's media player.

This section briefly describes how to use these features.

Please note that templates may apply additional options to features; refer to the template

documentation for more information.

9.1 Capture Photo
Purpose

Take a picture using the device's camera. This may be used for any purpose, such as validating that

the interview was taken with a genuine respondent, see a transport ticket that a respondent is

carrying, or check the products that a customer has taken from a store.

Description

The interviewer can tap the picture image, which opens up the camera. The picture taken is

automatically saved with the respondent data. This is an option specific to the *OPEN question type.

Files are stored using the name <interviewnumber>_<question>.jpg. For easy reference, this

filename is also listed as the open-ended answer.

Syntax

*UIOPTIONS "type=capture;capture=photo;photo-quality=high;take-label=<text>;r

etake-label=<text>"

Rendering options

Name Description Example

capture Set capture type. Currently only photo is supported. capture=photo

retake-label Label on the button that starts the camera, if a picture has

previously been taken
retake-label=Retake picture

take-label Label on the button that starts the camera take-label=Take picture

Default Template for Nfield System Rendering Options

Page 330

photo-quality Quality of the actual photo: low, medium, high, original
photo-quality=low

Remarks

▪ Photos are taken using the image quality and resolution settings configured on the device's

camera, and that depending on the range of devices and configurations in the field you may

receive pictures of various sizes. Your domain administrator needs to ensure the picture

resolution settings of interviewer devices are set to an acceptable level.

▪ Photos may be large and take the interviewers a long time to upload. Take care to limit the

number of photos taken in a single questionnaire.

▪ Capturing photos is not possible when testing the questionnaire on a browser on a desktop

computer.

▪ Photo quality is dependent on the device. The "original" setting is the device's own setting. If

you're working with a device with a fantastic HD camera, the "original" setting will render a much

better quality than "high". The photo-quality setting is a good way to keep (photo) filesize down.

Remember: all photos will have to be uploaded when doing a full sync with the Nfield servers. At

present the default setting is "high".

Example

*QUESTION 10 *OPEN 61L1 *UIOPTIONS "type=capture;capture=photo;take-label=Take picture;retake-label=Take picture again"

For interview validation purposes, can we please take a picture of your boarding pass?

9.1.1.1 See Also

*OPEN (question type) 203

CAPTURE AUDIO .. 331

PLAY MEDIA ... 333

SILENT RECORDING 341

Default Template for Nfield System Rendering Options

Page 331

9.2 Capture Audio

Purpose

Records audio (voice response) for a question. Voice response is preferred for open-ended answers

because most mobile devices are not ideal for entering open-ended answers.

Description

This option displays a record toggle button allowing the interviewer to select when audio recording

should be started and stopped. Recording a question for the second time replaces the previous

recording. There is also a playback toggle button which can be used to verify that the recording is

adequately audible.

If the recording is intended to replace a typed open-ended answer, it is recommended to use *NON

on the question. This allows both keyboard and voice input at the same time.

Audio clips are included in the download result data as MPEG3 files. You may need to download a

suitable codec or player for your operating system to be able to listen to the audio clips. We

currently suggest using Apple QuickTime because it natively supports MPEG3.

The file format of the audio clips is

[interview number]_[question reference].mpeg3

For example, the recorded answer to question 6000 for interview number 2 would be called

00000002_q6000.mpeg3. Note that interview numbers are always listed as eight-digit numbers.

Applies to

For open*QUESTION type only.

Default Template for Nfield System Rendering Options

Page 332

Syntax

*UIOPTIONS

"type=capture;capture=audio[;maximum-duration=<duration>]"

Rendering options

Name Description Example

maximum-duration Sets a maximum time length for

max-duration=30
the recording, in seconds. The recording is

truncated to fix the maximum.

Remarks

▪ Capturing audio is not possible when testing the questionnaire on a browser on a

desktop computer.

▪ Recording can be done on individual questions (respondent input) or the entire

interview can be captured (interviewer and respondent)

This latter option is called Silent Recording.

Example (Capture audio on a single question)

*QUESTION 6000 *OPEN L1 *MULTI *UIOPTIONS "type=capture;capture=audio; maximum-duration=30" *NON"

Do have any comments on the new design?

9.2.1.1 See Also

*OPEN (question type) 203

CAPTURE PHOTO 329

PLAY MEDIA ... 333

SILENT RECORDING 341

Default Template for Nfield System Rendering Options

Page 333

9.3 Play Media

Purpose

Displays or plays multimedia such as movie clips or sound during a question.

Description

Media playback is done using the device's designated playback app for this media format. The file

types that may be used for playback depend on the device on which playback is executed, and on the

operating system installed on the device. Recommended formats supported by most devices for

audio and video playback are *.MP3 and *.MPEG4. For example, movie clips start a video player

while sound clips start a sound player. Media playback can also display images of various formats.

If the media clip is a video, playback may overlap the actual question and the question may not be

visible until the playback app is closed.

When this rendering option is used, the selected scenario decides how media is presented and

optionally introduced. Currently only one scenario type is supported.

Applies to

Any *QUESTION type.

Syntax

*UIOPTIONS "type=play;media=[file][;scenario=<type>]

[;intro-text=<introduction text>][;minimum-duration=<duration>]"

Rendering options
intro-text

Text to display next to the play button when using the MediaWithIntro scenario.

Example: intro-text=Press play to start the video clip.

Default Template for Nfield System Rendering Options

Page 334

media

The full filename of the media file to be played. No path should be specified. The file to be played

must have been uploaded to the survey prior to deploying the survey.

Example: advertorial.mp4

minimum-duration

The minimum waiting time until the question text is made visible, in seconds. Nfield ODIN cannot

enforce playing the entire media clip (the interviewer may interrupt playback to return to the

interview) but with this setting the question may be hidden for a given amount of seconds. Set to -1

to make this equal to the clip duration.

Default: -1

Example: minimum-duration=10

Scenario

Specifies how the media clip and accompanying screens are displayed. Currently only supports

MediaWithIntro: an introduction text is displayed, and the interviewer must press a play button.

Example: scenario=MediaWithIntro

Example

*QUESTION 6000 *CODES L1 *UIOPTIONS “type=play;media=advertorial.mp4;scenario=MediaWithIntro;intro-text=Press play to

start the video clip.;minimum-duration=-1"

Have you previously seen the advertorial that was just shown?

1: Yes

2: No

3: Don’t remember

See Also

CAPTURE PHOTO 329

CAPTURE AUDIO .. 331

SILENT RECORDING 341

Only Relevant for Online Surveys

Page 335

10. Only Relevant for Online Surveys

10.1 Exit Links
For each result code of the interview, you can specify an exit link (URL) that redirects the respondent

to another page when he/she exits the interview. These links are called exit links.

10.1.1 Placing the Exit Links

There are two places the exit links can be set up in Nfield Manager:

1. In Domain-wide settings, Reports tab which is only visible to Domain Administrators. The exit

links set there will be valid for all the surveys in your domain:

Only Relevant for Online Surveys

Page 336

2. In Survey settings, Fieldwork tab:

10.1.2 Types of Exit Links

In both places you can define generic links for each exit code (a website to go to). You can also add

variables such as age, sex, length of interview etc. to the link.

Adding variables to the exit link is particularly useful when working with panel respondents who get

points for completed interviews. You can then pass their points along in the URL.

10.1.3 Generic Exit Links Example

This is an example of a generic exit-link based on code “18”, “Successful”:

Only Relevant for Online Surveys

Page 337

10.1.4 Variables in Exit Links Examples

Example 1

Here is an example of using variables in exit links. We add respondentkey and a sample variable

compStatus to the link:

Variables need to be defined in the script in the *SAMPLEDATA, and then filled in, as in script below

(the respondentkey, which was used in the original interview link, and is just passed along still needs

to be defined in the *SAMPLEDATA, but not filled in):

*SAMPLEDATA respondentkey, compStatusplay

*BLOCK

*QUESTION 1 *CODES 61L1

What is your gender?

1:Male

2:Female

*QUESTION 2 *NUMBER 62L2

What is your age?

*QUESTION 3 *CODES 64L1 *IF [Q2 > 17]

Do you have a driver license?

1: Yes

2: No

*ENDBLOCK

*PUT compstatus "Done"

*END

Only Relevant for Online Surveys

Page 338

Example 2

Here is another example of variables used in the exit link (Panel, respondentkey, compStatus, MF).

Note that in this case, while adding this link, you will see a warning that it is “Not a valid web address

link”, since it is not a valid wed address in this form (it only becomes a valid web address when filled

in with correct variable values). You can still save the link.

Here is the script defining and filling in these variables:

*SAMPLEDATA respondentkey,compStatus, MF,Panel

*QUESTION 1 *CODES 61L1

Panel?

1:Panel A

2:Panel B

3:Panel C

*QUESTION 2 *Codes 62L1

What is your Gender

1:Male

2:Female

Only Relevant for Online Surveys

Page 339

**Build exit link

*if [Q1,1 & Q2,1] *put Panel "PanelAAAA.com" *put MF "Gender=Male"

*if [Q1,1 & Q2,2] *put Panel "PanelAAAA.com" *put MF "Gender=Female"

*if [Q1,2 & Q2,1] *put Panel "PanelBBBB.com" *put MF "Gender=Male"

*if [Q1,2 & Q2,2] *put Panel "PanelBBBB.com" *put MF "Gender=Female"

*if [Q1,3 & Q2,1] *put Panel "PanelCCCC.com" *put MF "Sex=Male"

*if [Q1,3 & Q2,2] *put Panel "PanelCCCC.com" *put MF "Sex=Female"

*PUT compStatus "Done"

*END

In this example we have 3 panels (Panel A, Panel B and Panel C), which we fill in based on

respondent’s choice in Q1. The respondentkey was given to the respondent to run the interview, so

that we just pass along. The compStatus we also set in the script. The MF is to indicate the gender of

the respondent. Since in our example Panel C uses variable Sex, instead of Gender (as Panel A and

Panel B do), we use a variable MF to store the appropriate variable name and value based on

respondent’s response to questions 1 and 2.

If we wanted to, we could save the whole link to another variable (for example, exitLink), and then

just put that variable into the exit link as Error! Hyperlink reference not valid..

10.2 NIPO Status Page

NIPO has a Status page for Nfield at https://status.nfieldmr.com.

The Status page shows the availability for the four main services (Nfield Manager, Nfield public API,

Nfield CAPI data synchronization service, Nfield Online interviewing) for each of the four availability

regions of Nfield:

https://status.nfieldmr.com/

Only Relevant for Online Surveys

Page 340

If in your day-to-day business you are experiencing problems with Nfield performance or availability

please refer to this page before raising a support ticket with us. You do not need to raise tickets for

problems that are already known.

http://elink.nipo.com/c/7/eyJhaSI6OTMwODE2NzAsImUiOiJhNDMxMkB0bnMtbmlwby5jb20iLCJyaSI6ImNvbnRhY3QtMzBlYzc2NGI2MGNlZTQxMWE2YzE2YzNiZTViZThjNzgtNjU1M2I0OTAyNmVjNDYxNmJkZDM1YTE3YjQ0OGJlYmUiLCJycSI6InAxLWIyMzMxMC1kZDBjNDNlODUyYTU0NWE1YmI3MDhlZTFhYzNhMjYwNCIsInBoIjpudWxsLCJtIjpmYWxzZSwidWkiOiIzIiwidW4iOiIiLCJ1IjoiaHR0cHM6Ly9zdXBwb3J0Lm5pcG8uY29tL25pcG8vbWVkaWEvTmlwby9tYWlsaW5nL1A0UzNfTmZpZWxkU3RhdHVzUGFnZS5wbmc_X2NsZGVlPXFUSGdZNDdxVzR4aEtRWWxXajB3QmJDbmlEMUpWeFNWcTlfNkNTUHBwUkVwYkFBVTlZTzV2NlBrUDJLM3pCME4mcmVjaXBpZW50aWQ9Y29udGFjdC0zMGVjNzY0YjYwY2VlNDExYTZjMTZjM2JlNWJlOGM3OC02NTUzYjQ5MDI2ZWM0NjE2YmRkMzVhMTdiNDQ4YmViZSZlc2lkPWVlOWMxZWIwLWJhN2MtZWUxMS04MTc5LTAwMjI0ODlhNzA1ZCJ9/G9HOIcI19PamTwonxdTg4w

Only Relevant for CAPI Surveys

Page 341

11. Only Relevant for CAPI Surveys

11.1 Silent Recording
Purpose

Recording of the interview in the background (sound recording only, no video; both interviewer and

respondent are being recorded).

Description

The silent recording can be enabled from the ODIN script with command *REC in the script.

Syntax

*REC [[pos]L<length>] ["Filename"] | [::DELETE::]

[::NOSAVE::]

• You specify a data position and optionally a filename.

• *REC using a data field specification starts recording; *REC without a data field

specification ends recording.

• Recording also automatically stops at the end of the script.

• Options ["Filename"] and [::NOSAVE::] should be specified at the start of the

recording.

• Option [::DELETE::] should be at the end of the recording (when you stop the

recording, but only if you have not specified [::NOSAVE::] at the start of the recording.

The recorded file will typically be in mpeg4 format, but that may depend on the actual

device. The output files are named like this:

 [interview number]_[file name-][position reference]-[index-number].mpeg3

▪ interview number: is the number of the relevant interview

▪ file name: the specified filename, only if specified

▪ position reference: data position specified at the *REC command

▪ index-number: starting with 1, but if the silent recording is interrupted by a specific audio

capture question, the silent recording will continue in a new file with an increased index-

number.

▪ ::DELETE:: deletes the recording and all other recordings after it in the script.

▪ ::NOSAVE:: does not save the current recording. By adding the parameter ::NOSAVE:: to

a *REC command, you can indicate that the selected recording should not be saved. The

recording will still start (showing a green dot in the app) but will not be uploaded to Nfield upon

synchronisation. Unlike the ::DELETE:: parameter which stops and deletes all silent

recordings, the ::NOSAVE:: will have no effect on other *REC commands.

Example

For interview 00000001, the ODIN syntax:

Only Relevant for CAPI Surveys

Page 342

*REC 61L1

will result in a file called 00000001_61L1-1.mpeg3.

If there would be a separate audio capture in that silent recording, the next part would be

stored in a file called: 00000001_61L1-2.mpeg3.

If you also specify a filename, e.g. *REC 67L1 "MyFile", the resulting filename

would be 00000001_MyFile-67L1-1.mpeg3.

Notes

▪ The Nfield Online surveys do not support sound recording, only Nfield CAPI ones do.

▪ To prevent error messages in online test interviews, it is best practice to make the *REC

command conditional based on the system variable _ISTEST, like this:

*IF [#_ISTEST] *REC 61L1

Best Practices

▪ Always ask permission before starting silent recording.

▪ If permission is denied, stop and delete the recording.

▪ Only record the parts of the interview you need, since it is impossible to listen to recordings

that are too long.

Example 1

In this example, we first ask the user for permission to record parts of the interview. If permission is

given, we record the only the most relevant parts of the interview (not the whole interview),

otherwise we stop recording and delete whatever was recorded.

*TEMPLATE "NfieldChicago"

**start recording introduction

*REC 61L1 "Introduction"

*QUESTION 1 *CODES 62L1

For quality assurance we are recording part(s) of this interview.

Do you give permission to record part(s) of this interview?

1: Yes

2: No

**stop and delete recording if permission has been refused

*IF [Q1,2] *REC "::DELETE::"

*QUESTION 2 *ALPHA 124L15

What is your name?

*QUESTION 3 *CODES 139L1

What is your gender?

1:Male

2:Female

**End recording introduction

*REC

*QUESTION 4 *CODES 140L1

Part of the survey not to be recorded

Only Relevant for CAPI Surveys

Page 343

1:ok

*QUESTION 5 *CODES 142L6 *MULTI

Which of these brands do you know?

1:Brand A

2:Brand B

3:Brand C

4:Brand D

5:Brand E

6:Brand F

*QUESTION 6 *CODES 148L1 *CONTROL Q5 W

Which of these brands is your favorite?

1:Brand A

2:Brand B

3:Brand C

4:Brand D

5:Brand E

6:Brand F

*QUESTION 7 *CODES 149L1

Another part of the survey not to be recorded

1:ok

*END

Example 2

In this example, we save recording randomly once every 5 interviews. This way we save ourselves the

trouble of saving and syncing interviews we couldn’t all possibly listen to. This way you just listen to

a number of recordings you agreed to in your quality assurance processes.

*TEMPLATE "NfieldChicago"

**start recording

*REC 61L1 "LongRecording"

*QUESTION 1 *CODES 62L1

For quality assurance we are recording part(s) of this interview.

Do you give permission to record part(s) of this interview?

1: Yes

2: No

**stop and delete recording if permission has been refused

*IF [Q1,2] *REC 63L61 "::DELETE::"

*QUESTION 2 *ALPHA 124L15

What is your name?

*QUESTION 3 *CODES 139L1

What is your gender?

1:Male

2:Female

*QUESTION 4 *CODES 142L6 *MULTI

Which of these brands do you know?

1:Brand A

2:Brand B

3:Brand C

4:Brand D

Only Relevant for CAPI Surveys

Page 344

5:Brand E

6:Brand F

*QUESTION 5 *CODES 148L1 *CONTROL Q4 W

Which of these brands is your favorite?

1:Brand A

2:Brand B

3:Brand C

4:Brand D

5:Brand E

6:Brand F

*QUESTION 8 *codes 151L1

This is the end of this survey.

Thank you, do you have an additional remarks or questions?

1:No

2:Yes *open

**Save recording randomly once every 5 interviews.

*REPEAT 5 *FIELD 152L5 *RANDOM

*IF [?R = 1] *REC *END

*REC 1L1 "::DELETE::"

*END

*ENDREP

*END

Example 3

In this example, we record into a file called TooShort. If the recording is longer than 30 seconds, we

do not save it. Otherwise we do save it.

*TEMPLATE "NfieldChicago"

*VARS STOPWATCH[3]

*PUT STOPWATCH[3] [0]

*REC 61L1 "TooShort"

*QUESTION 1 *CODES 62L1

This is question 1 of the section

1:ok

*QUESTION 2 *CODES 63L1

This is question 2 of the section

1:ok

*QUESTION 3 *CODES 64L1

This is question 3 of the section

1:ok

*QUESTION 4 *CODES 65L1

This is question 4 of the section

1:ok

*IF [STOPWATCH[3] >= 30] *REC 66L1 ":: DELETE::"

*IF [STOPWATCH[3] < 30] *REC

*PAGE

The rest of the survey

Only Relevant for CAPI Surveys

Page 345

*END

Example 4

In this example, if given permission, we record this interview, except for the question 60. To do that,

we put a ::NOSAVE:: on *REC for that question. You use ::NOSAVE:: if you want an indication to

the interviewer that the recording is being done all through the interview, but not saving every part

of the interview so the interviewer does not know which part of the interview exactly will be checked.

*TEMPLATE "NfieldChicago"

**Start recording consent question

*REC 67L1 "Consent"

*QUESTION 40 *CODES 68L1

Do you give me permission to record the following parts of this interview for quality control purposes?

1: Yes

2: No

**Stop and delete all recordings if permission is not given

*IF [Q40,2] *REC 70L1 "::DELETE::"

*REC 72L1 "BrandAwareness"

*QUESTION 50 *CODES 74L6 *MULTI

I will read out a number of brands. Please indicate for each of these brands if you have heard of them before.

1: Brand A

2: Brand B

3: Brand C

4: Brand D

5: Brand E

6: None of these *NMUL

*REC

*REC 80L1 "::NOSAVE::"

*QUESTION 60 *CODES 82L6 *MULTI *CONTROL Q50 W

Which of those brands have you used yourself?

1: Brand A

2: Brand B

3: Brand C

4: Brand D

5: Brand E

6: None of these *NMUL

*REC

*REC 89L1

*QUESTION 70 *OPEN 90L1

Could you describe what you would use those brands for?

*REC

*END

Only Relevant for CAPI Surveys

Page 346

11.1.1.1 See Also

*IF (condition)... 162

CAPTURE PHOTO 329

CAPTURE AUDIO .. 331

PLAY MEDIA ... 333

Only Relevant for CAPI Surveys

Page 347

11.2 GPS Location Fix from Script

Nfield performs a location fix at the start of each CAPI interview by default. Optionally, interviewers

can be instructed to validate this initial location fix at the end of the interview.

GPS location fix from script is only possible using the Chicago template.

It is also possible to perform location fixes during the interview which can be triggered and then

accessed by the ODIN script. This allows Nfield users to ensure CAPI interviewers are at a designated

location (and remain there) for specific parts of the interview. It also enables scripters to have Nfield

validate this location data at runtime and base routing and/or dynamic content on this information.

It should be noted that performing GPS fixes takes its toll on the device's battery, especially when the

location listener has to be switched on and off for each request. To optimize performance, we have

chosen to introduce a "continuous tracking" mode, which will keep the location listeners switched on

for the duration of the interview. This mode is switched off by default and can be enabled through a

new survey setting, which can be set as follows:

In the Nfield Manager check the option "Enable continuous tracking during interview" in the

Interview settings panel under the Fieldwork tab.

Enabling continuous tracking mode will store location info in the audit log for each question and

page shown during the interview. This will allow users to verify during quality control where an

interviewer was for each part of the interview.

If the intention is to verify location info at runtime during the interview, the GPS fix must be triggered

by inserting a dedicated location capture question (question type: *ALPHA with *UIOPTIONS

"track-gps-location=true") at the relevant point(s) in the ODIN script (i.e. before the actual

interview question that needs to be associated with the location fix, with both questions placed

Only Relevant for CAPI Surveys

Page 348

inside the same *BLOCK). The *UIOPTIONS parameter will ensure the location capture question

itself will be hidden during the interview, while the captured location info will be stored as its answer

in the following json-format:

{{“latitude”:”<value>”,”longitude”:”<value>”,”accuracy”:<value>,”IsGeolocatio

nEnabled”:”<true>”}

Notes

• Please make sure the allocated field length for the hidden question is at least 90 to

accommodate the maximum size of the location info.

• The hidden question does require some question text in the script in order to work properly.

Depending on the connection quality, the question may under certain conditions be visible

briefly before being hidden, so please take this into consideration when choosing this

question text.

• To make use of the new GPS location fix from script functionality, the continuous tracking

mode must be enabled. If Nfield detects that the script contains a location tracking question,

while continuous tracking mode is not enabled, it will write only a warning to the answer,

instead of the location info.

• If location tracking is disabled on the interviewer's device, Nfield will not throw any

warnings, but simply write blank or erroneous location data.

Example

*BLOCK

*QUESTION 20 *ALPHA 64L100 *UIOPTIONS "track-gps-location=true"

Location capture.

*QUESTION 21 *CODES 165L1

Have you ever used this product?

1:Yes

2:No

*ENDBLOCK

For more information

Please watch the following NIPO Academy: https://nipo.com/webinar/academy-57-gps-location-fix.

https://nipo.com/webinar/academy-57-gps-location-fix

Only Relevant for CAPI Surveys

Page 349

11.3 Adding custom fields to Sampling Points

You can attach specific attributes (using custom fields) to sampling points. These attributes can then

be accessed from script during a CAPI interview. You can then base question content or routing on

sampling point-specific information. This is useful in scenarios in which interviewers are generating

addresses themselves during fieldwork.

To make this functionality work, there are two steps:

Step 1. Define one or more custom fields in the Sampling Point. This can be done in Nfield Manager

by uploading a csv, where any custom fields are assigned the prefix SampleData::

Below is an example:

It can also be done through Nfield Public API, using the

POST /v1/surveys/{surveyId}/samplingPoints endpoint. In the body, you can specify

custom fields under “customDataItems” (please see our API help page for more details).

Below is an example:

Please note that custom field names for Sampling Points are case-insensitive and cannot

be the same as system field names (however, there are no changes in the constraints for

custom field names in Addresses)

Step 2. Declare the custom field(s) as *SAMPLEDATA in your script (without the

SampleData:: prefix):

https://api.nfieldmr.com/

Only Relevant for CAPI Surveys

Page 350

Notes:

1. If values for a custom field are different in the Sampling Point and Address, the value in
Address takes precedence, except if the latter is empty.

2. Sampling Point information from a custom field is read-only during the interview (for
Addresses, it is read-write).

3. Currently, this option is only supported for CAPI surveys with sampling methods Sampling
Points with Addresses (with or without quota). In a future update, we will also enable this for
Sampling Points without Addresses.

Appendix

Page 351

12. Appendix

12.1 Nfield Acceptable Use Policy

Please review the Nfield Acceptable Use Policy on the NIPO website.

The Nfield platform creates and renders large and complex questionnaires that are coated

with engaging, attractive and mobile-friendly designs, while revising quota targets and sample

managements. All users only need internet, a username and a password to work with Nfield. NIPO

takes care of all the IT management for all the users. All of this comes with lower costs and better

scalability than ever before.

To keep the performance and availability bar so high, all the users of Nfield need to be aware of the

rules that:

• maintain and even bolster Nfield’s powers for each user.

• support the legal framework of the services provided by Nfield. We

encourage you to read “Nfield Terms and Conditions“)

These rules are what this Acceptable Use Policy is about.

12.2 Maximum Number of Respondents To Upload
You can upload up to 100,000 respondents to your survey in Nfield. Technically you can upload more

respondents, but this will negatively impact the performance of the Nfield Manager. If you need to

upload more than 100,000 respondents to a survey, you should split them in separate surveys with

no more than 100,000 respondents per survey.

12.3 Maximum Length for Sample Fields
The maximum length for sample fields is 1,500 characters. Any character added after this limit will

now automatically be removed by the system. The only exception is the field which is indicated to

hold the email address for sending invitations, this is limited to 700 characters. Any row that goes

over this limit will prevent the batch from being sent.

12.4 Response Codes
Response codes are survey exit codes, which are used to track how respondents exit the

questionnaire. Did they complete? Got screened-out? Or simply not finished it? It’s important to

make sure the questionnaire has proper exit commands so that correct exit codes get recorded.

There is a number of standard, system-wide response codes, which cannot be altered.

Default response codes

https://www.nipo.com/nfield-aup
https://www.nipo.com/nfield-terms-of-use

Appendix

Page 352

Response code Response code list Text shown on the screen Specification

18 System code Successful Saved data

19 System code *ENDNGB (in questionnaire) Saved data

20 Online and CAPI: System

error

21 Stratification reached Saved data

22 *ABORT Data is not saved

23 -END

24 Refusals to be retried

26 Only CAPI: duplicate

interview

27 Used by survey

29 Online and CAPI: Interrupted

30 Only Online: fieldwork is not

allowed

31 Only Online: the survey is

stopped

32 Only Online: interview was

already completed

33 Only Online: respondent key

is required for the survey

34 Only Online: respondent key

does not exist, but is required

for the survey

35 Only Online: the survey

cannot be found

36 Only Online: An error

occurred while processing the

request

101 Only Online: Timed out Saved data

102 Only Online: Active

respondent when fieldwork

stops

104 Only CAPI: stopped by

interviewer

 Saved data

105 Only CAPI: reset by

interviewer

 Data is not saved

106 Only Online: Active

107 Only Online: handed over to

external application

 Saved data

108 Only Online: stopped;

exceeded metric thresholds

Stopped; exceeded

metric thresholds

• Successful (18): respondents completed the entire survey, passed the screener and finished

the questionnaire all the way to the last question. The command to use in the questionnaire,

as previously discussed, is *END.

Appendix

Page 353

• Screened out (19): respondents didn’t pass our screening. They either didn’t fit the research

criteria, or they were no longer necessary because we reached our quota targets already. The

command to use in the questionnaire is *ENDNGB.

• Dropped out (29): respondents didn’t finish the survey, but are allowed to restart it. In CAPI,

if you see a code 29, it means that there is probably an appointment for another date/time

was made. In Online, code 29 means the respondent has clicked the Pause button (this

button is only present if there is a respondent key and you allowed the interview to be

paused in the survey settings on the Setup Survey/Fieldwork page). They can restart the

survey.

• Respondent key does not exist, but is required for the survey (34): respondent key is

required for this survey, but only known respondents are allowed for this survey, but the key

used by respondent does not match any know respondents (in the sample table for the

survey).

• Dropped out (101): respondents didn’t finish the survey and are NOT allowed to restart it

(unlike for code 29). For the Online survey, it means that they closed their browser during a

survey without a respondent key (101). For CAPI, it probably means they’ve opted out of

completing survey (during the interview), and do not wish to make a new appointment.

• Active respondent (102): active respondent when fieldwork stops.

• Active live (106): this interview is running right now.

• Stopped, exceeded metric thresholds (108): the interview has exceeded the metrics values

and stopped by Nfield to protect the other interviews in the survey. This should be checked

and corrected by the scripter IMMEDIATELY to prevent repeats.

You can also define custom result codes for every survey. These need to be numbered from 201 and

upwards. The result codes with numbers 1-200 are reserved as system wide codes. Custom codes can

be used for survey specific reasons. For example, you’re doing research and you want to only

interview people who drive a red motorcycle. You would create 2 custom codes: “Doesn’t drive a

motorcycle” (201) and another code “Color is not red” (202).

When the fieldwork is done, and the data goes to the data processing department, who will use these

exit codes to filter out the “successful” interviews for processing and delivery of results. They will

also perform checks on the “not successful” and “aborted” interviews to see where and why they

failed.

The results are viewed by fieldwork managers to monitor progress and quality of the fieldwork. Each

completed “successful” interview is added to various targets for the survey.

12.5 TTStartLink
In section 7.4.2 Rules for the Sample Table Headers, there is a list of system variables (that all start

with TT). None of them are available for scripting, with the exception of TTSTartLink.

Appendix

Page 354

TTStartLink holds the URL of the online interview. Using it you can pass the URL to a panel or a third-

party so they know which interview to restart.

The TTStartLink needs to be added to the script as *TEXTVARS variable. You don't need

to add any data for that variable – it’s a read-only variable. In the interviewing backend we

will fill this variable with the proper interview start link.

You can then use that variable in the script as they want. They can use it for the external

API calls that you want to do or to build the exit link from within the script. For that

purpose, you would also need an ExitLink sample data variable (you can call it as you

want) in the script and in the response code exit link.

For example, you can have this relocation URL in the Nfield

Manager https://www.{ExitLink} and this script:

*SAMPLEDATA ExitLink, Age, Gender

*TEXTVARS TTStartLink

*QUESTION 1 *ALPHA 62L10

What is your Gender?

*PUT Gender Q1

PUT ExitLink ‘www.google.com/?startlink=?TTStartLink&gender=*?Gender’

* PAGE

ExitLink = *?ExitLink

StartLink = *?TTStartLink

*ENDST 107

107

The variables will be replaced inside the script and we don't need to wait for the

replacement at the end of the interview.

Note: The problem with this, is that the data will end up in the database, so if it is Personal

Information (PI) data, you would also need to take care of clearing the ExitLink column if

it is requested by the respondent.

Page 356

 NIPO

 Amsteldijk 166

 1079 LH Amsterdam

 The Netherlands

 helpdesk@nipo.com

 www.nipo.com

NIPO So

